Advertisement

Applied Microbiology and Biotechnology

, Volume 99, Issue 6, pp 2637–2647 | Cite as

Exopolysaccharide biosynthesis and biodegradation by a marine hydrothermal Alteromonas sp. strain

  • Florian Lelchat
  • Joelle Cozien
  • Tinaïg Le Costaouec
  • Christophe Brandilly
  • Sophie Schmitt
  • Anne-Claire Baudoux
  • Sylvia Colliec-Jouault
  • Claire Boisset
Biotechnologically relevant enzymes and proteins

Abstract

Alteromonas macleodii subsp. fijiensis biovar deepsane is a deep-sea ecotype exopolysaccharide-producing bacteria isolated from the polychaete annelid Alvinella pompejana. The high molecular weight biopolymer HYD657 produced by this strain, is the first marine exopolysaccharide (EPS) to be commercialized for cosmetic use. Depolymerization methods are necessary to elucidate the complete structure of this EPS and to generate potentially bioactive oligosaccharides. Enzymatic methods are useful for elucidating polysaccharide structure because they specifically cleave glycosidic bonds and do not require harsh chemical conditions. The HYD657 EPS is structurally complex and no commercially available enzymes are able to effectively degrade it. Here, we present the first results on the endogenous enzymatic depolymerization of a marine EPS of biotechnological interest by the producing strain. Enzymatic activity was detected in the bacterial lysate and was able to decrease the apparent molecular size of the EPS, releasing mainly oligosaccharides. The reduced form of the native polysaccharide showed a slightly modified osidic composition, particularly in terms of molar ratio. Several exoglycosidase activities were measured in the bacterial lysate using paranitrophenyl-osides.

Keywords

Marine Alteromonas macleodii sp. strain Bacterial exopolysaccharides Microbial extracellular enzymes Endogenous enzymatic degradation 

Notes

Acknowledgments

This research was financially supported by the French Institute for Exploitation of the Sea, the Brittany Regional Council and the GlycoOuest network for Research in Glycosciences.

References

  1. Badel S, Bernardi T, Michaud P (2011) New perspectives for Lactobacilli exopolysaccharides. Biotechnol Adv 29:54–66CrossRefPubMedGoogle Scholar
  2. Bakkevig K, Sletta H, Gimmestad M, Aune R, Ertesvåg H, Degnes K, Christensen BE, Ellingsen TE, Valla S (2005) Role of the Pseudomonas fluorescens alginate lyase (AlgL) in clearing the periplasm of alginates not exported to the extracellular environment. J Bacteriol 187:8375–8384PubMedCentralCrossRefPubMedGoogle Scholar
  3. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities utilizing the principle of protein dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  4. Cambon-Bonavita MA, Raguenes G, Jean J, Vincent P, Guézennec J (2002) A novel polymer produced by a bacterium isolated from a deep-sea hydrothermal vent polychaete annelid. J Appl Microbiol 93(2):310–315CrossRefPubMedGoogle Scholar
  5. Colliec-Jouault S, Chevolot L, Helley D, Ratiskol J, Bros A, Sinquin C, Roger O, Fischer AM (2001) Characterization, chemical modifications and in vitro anticoagulant properties of an exopolysaccharide produced by Alteromonas infernus. Biochem Biophys Acta 1528(2–3):141–151CrossRefPubMedGoogle Scholar
  6. Courtois A, Berthou C, Guézennec J, Boisset C, Bordron A (2014) Exopolysaccharides isolated from hydrothermal vent bacteria can modulate the complement system. PLoS ONE. doi: 10.1371/ 0094965 Google Scholar
  7. Driskill LE, Bauer MW, Kelly RM (1999) Synergistic interactions among β-laminarinase, β-1,4-glucanase, and β-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus during hydrolysis of β-1,4-, β-1,3-, and mixed-linked polysaccharides. Biotechnol Bioeng 66:51–60CrossRefPubMedGoogle Scholar
  8. Freitas F, Alves VD, Reis MAM (2011) Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotechnol 29:388–398CrossRefPubMedGoogle Scholar
  9. Guezennec J, Cambon-Bonavita MA, Raguénès G, Jean J, Vincent P (2002) A novel polymer produced by a bacterium isolated from a deep-sea hydrothermal vent polychaete annelid. J Appl Microbiol 93(2):310–315CrossRefPubMedGoogle Scholar
  10. Kidby DK, Davidson DJA (1973) Convenient ferricyanide estimation of reducing sugars in the nanomole range. Anal Biochem 55(1):321–325CrossRefPubMedGoogle Scholar
  11. Kumar AS, Mody K, Jha B (2007) Bacterial exopolysaccharides—a perception. J Basic Microbiol 47:103–117CrossRefPubMedGoogle Scholar
  12. Le Costaouëc T, Cérantola S, Ropartz D, Ratiskol J, Sinquin C, Colliec-Jouault S, Boisset C (2012) Structural data on a bacterial exopolysaccharide produced by a deep-sea Alteromonas macleodii strain. Carbohydr Polym 90:49–59CrossRefPubMedGoogle Scholar
  13. Lee HG, Cowman MK (1994) An agarose gel electrophoretic method for analysis of hyaluronan molecular weight distribution. Anal Biochem 219:278–287CrossRefPubMedGoogle Scholar
  14. Legoux R, Lelong P, Jourde C, Feuillerat C, Capdevielle J, Sure V, Ferran E, Kaghad M, Delpech B, Shire D, Ferrara P, Loison G (1997) N-acetyl-heparosan lyase of Escherichia coli K5: gene cloning and expression. J Bacteriol 178:7260–7264Google Scholar
  15. Okutani K (1984) Antitumor and immunostimulant activities of polysaccharide produced by a marine bacterium of the genus Vibrio. Bull Japan Soc Sci Fish 50:145–156CrossRefGoogle Scholar
  16. Park R, Oh DK (2010) Effects of galactose and glucose on the hydrolysis reaction of a thermostable β-galactosidase from Caldicellulosiruptor saccharolyticus. Appl Microbiol Biotechnol 85:1427–1435. doi: 10.1007/s00253-009-2165-7 CrossRefPubMedGoogle Scholar
  17. Pham L, Dupont I, Roy D, Lapointe G, Cerning J (2000) Production of exopolysaccharide by Lactobacillus rhamnosus R and analysis of Its enzymatic degradation during prolonged fermentation. Appl Environ Microb 66(6):2302–2310Google Scholar
  18. Petit AC, Noiret N, Guezennec J, Gondrexon N, Colliec-Jouault S (2007) Ultrasonic depolymerization of an exopolysaccharide produced by a bacterium isolated from a deep-sea hydrothermal vent polychaete annelid. Ultrason Sonochem 14(2):107–112CrossRefPubMedGoogle Scholar
  19. Rigouin C, Delbarre-Ladrat C, Ratiskol J, Sinquin C, Colliec-Jouault S, Dion M (2012) Screening of enzymatic activities for the depolymerization of the marine bacteria exopolysaccharide HE800. Appl Microbiol Biotechnol 96(1):143–151CrossRefPubMedGoogle Scholar
  20. Rougeaux H, Guezennec J, Carlson RW, Kervarec N, Pichon R, Talaga P (1999) Structural determination of the exopolysaccharide of Pseudoalteromonas strain HYD 721 isolated from a deep-sea hydrothermal vent. Carbohydr Res 315:273–285CrossRefPubMedGoogle Scholar
  21. Stone BA, Svensson B, Collins ME, Rastall RA (2008) Polysaccharide degradation. In: Fraser-Reid BO, Tatsuta K, Thiem J (eds) Glycoscience. Springer, Berlin, pp 2325–2375CrossRefGoogle Scholar
  22. Sutherland IW (1995) Polysaccharides lyases. FEMS Microbiol Rev 16:323–347CrossRefPubMedGoogle Scholar
  23. Sutherland IW (1999a) Microbial polysaccharides from Gram-negative bacteria. Int Dairy J 11:663–674CrossRefGoogle Scholar
  24. Sutherland IW (1999b) Polysaccharases in biofilm. In: Flemming HC (ed) Microbial extracellar polymeric substances. Springer, Berlin, pp 201–216CrossRefGoogle Scholar
  25. Thibodeau A, Takeoka A (2006) The applications and functions of new exopolysaccharide “Deepsane” from the deepest oceans. Fragr J 34(3):61–68Google Scholar
  26. Volpi N, Maccari F (2002) Detection of submicrogram quantities of glycosaminoglycans on agarose gels by sequential staining with toluidine blue and Stains-All. Electrophoresis 23(24):4060–4066CrossRefPubMedGoogle Scholar
  27. Wolfaardt GM, Lawrence JR, Korber DR (1999) Function of EPS. In: Wingender DJ, Neu DTR, Flemming H-C (eds) Microbial extracellular polymeric substances. Springer, Berlin, pp 171–200CrossRefGoogle Scholar
  28. Zanchetta P, Lagarde N, Guezennec J (2003) A new bone healing material: a hyaluronic acid like bacterial exopolysaccharide. Calcif Tissue Int 72(1):74–79CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Florian Lelchat
    • 1
    • 2
  • Joelle Cozien
    • 1
    • 2
  • Tinaïg Le Costaouec
    • 3
  • Christophe Brandilly
    • 1
    • 2
  • Sophie Schmitt
    • 1
    • 2
  • Anne-Claire Baudoux
    • 4
  • Sylvia Colliec-Jouault
    • 1
    • 2
  • Claire Boisset
    • 1
    • 2
    • 3
  1. 1.IFREMER, Technopole Brest IroisePlouzanéFrance
  2. 2.IFREMER, Rue de l’Ile d’YeuNantes cedex 3France
  3. 3.CERMAVGrenoble cedex 9France
  4. 4.Station Biologique de Roscoff, CNRSRoscoffFrance

Personalised recommendations