Advertisement

Applied Microbiology and Biotechnology

, Volume 99, Issue 2, pp 775–789 | Cite as

Development of new tolerant strains to hydrophilic and hydrophobic organic solvents by the yeast surface display methodology

  • C. Perpiñá
  • J. Vinaixa
  • C. AndreuEmail author
  • M. del OlmoEmail author
Applied genetics and molecular biotechnology

Abstract

Yeast surface display is a research methodology based on anchoring functional proteins and peptides onto the surface of the cells of this eukaryotic organism. Its development has resulted in the construction of a good number of new whole-cell biocatalysts with diverse applications in biotechnology, pharmacy, and medicine. In this work, we describe the design of new yeast strains in which several proteins and peptides have been introduced at the N-terminal position of protein agglutinin Aga2p. In all cases, proteins were correctly expressed and displayed on the cell surface according to the western blot, fluorescence microscopy, and fluorescence-activated cell sorting (FACS) analyses. The introduction of a glycosylable, Ser/Thr-rich protein (S1) resulted in improved resistance to ethanol, nonane, and dimethyl sulfoxide (DMSO) stress. The protein with a very high hydrophobic content (S2d) proved to confer tolerance to acetonitrile, ethanol, nonane, salt, and sodium dodecyl sulfate (SDS). The introduction of five leucine residues at the N-terminal position of S1 and S2 resulted in similar or increased resistance to the above-mentioned stress conditions. The adverse effects described in a previous work, when these residues were introduced into the N-terminus of Aga2p, with no other protein acting as a spacer, were not observed. Indeed, these strains grew better in the presence of hydrophilic solvents such as acetonitrile and ethanol. The new strains reported in this work have biotechnological potentiality given their behavior under adverse conditions of interest for biocatalytic and industrial processes.

Keywords

Cell surface Organic solvents Saccharomyces cerevisiae Stress resistance Yeast surface display 

Notes

Acknowledgements

We are indebted to Dr. Neville for providing us with the pYD5 plasmid. We gratefully acknowledge SCSIE (Universitat de València) for access to its instrumental facilities of DNA sequencing and flow cytometry. This work has been supported by grant from the Spanish Ministry of Science and Technology BFU2011-23501/BMC.

Supplementary material

253_2014_6048_MOESM1_ESM.pdf (491 kb)
ESM 1 (PDF 491 kb)

References

  1. Andreu C, del Olmo M (2013) Yeast arming by the Aga2p system: effect of growth conditions in galactose on the efficiency of the display and influence of expressing leucine-containing peptides. Appl Microbiol Biotechnol 97:9055–9069. doi: 10.1007/s00253-013-5086-4 CrossRefPubMedGoogle Scholar
  2. Andreu C, del Olmo M (2014) Potential of some yeast strains in the stereoselective synthesis of (R)-(−)-phenylacetylcarbinol and (S)-(+)-phenylacetylcarbinol and their reduced 1,2-dialcohol derivatives. Appl Microbiol Biotechnol 98:5901–5913. doi: 10.1007/s00253-014-5635-5 PubMedGoogle Scholar
  3. Attfield PV (1997) Stress tolerance: the key to effective strains of industrial baker’s yeast. Nat Biotechnol 15:1351–1357. doi: 10.1038/nbt1297-1351 CrossRefPubMedGoogle Scholar
  4. Bariotaki A, Kalaitzakis D, Smonou I (2012) Enzymatic reductions for the regio- and stereoselective synthesis of hydroxyketo esters and dihydroxy esters. Org Lett 14:1792–1795. doi: 10.1021/ol3003833 CrossRefPubMedGoogle Scholar
  5. Bauer FF, Pretorius IS (2000) Yeast stress response and fermentation efficiency: how to survive the making of wine—a review. S Afr J Enol Vitic 21:27–51Google Scholar
  6. Blazic M, Kovacevic G, Prodanovic O, Ostafe R, Gavrovic-Jankulovic M, Fischer R, Prodanovic R (2013) Yeast surface display for the expression, purification and characterization of wild-type and B11 mutant glucose oxidases. Protein Expr Purif 89:175–180. doi: 10.1016/j.pep.2013.03.014 CrossRefPubMedGoogle Scholar
  7. Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 6:553–557. doi: 10.1038/nbt0697-553 CrossRefGoogle Scholar
  8. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  9. Breinig F, Schmitt MJ (2002) Spacer-elongated cell wall fusion proteins improve cell surface expression in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 58:637–644. doi: 10.1007/s00253-002-0939-2 CrossRefPubMedGoogle Scholar
  10. Chen I, Dorr BM, Liu DR (2011) A general strategy for the evolution of bond-forming enzymes using yeast display. Proc Natl Acad Sci U S A 108:11399–113404. doi: 10.1073/pnas.1101046108 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cid VJ, Duran A, del Rey F, Snyder MP, Nombela C, Sánchez M (1995) Molecular biology of cell integrity and morphogenesis in S. cerevisiae. Annu Rev Microbiol 59:345–386Google Scholar
  12. Csuk R, Glänzer B (1991) Baker’s yeast mediated transformations in organic chemistry. Chem Rev 91:49–97. doi: 10.1021/cr00001a004 CrossRefGoogle Scholar
  13. Fukuda T, Tsuchiyama K, Makishima H, Takayama K, Mulchandani A, Kuroda K, Ueda M, Suye S (2010) Improvement in organophosphorus hydrolase activity of cell surface-engineered yeast strain using Flo1p anchor system. Biotechnol Lett 32:655–659. doi: 10.1007/s10529-010-0204-1 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Han T, Sui J, Bennett AS, Liddington RC, Donis RO, Zhu Q, Marasco WA (2011) Fine epitope mapping of monoclonal antibodies against hemagglutinin of a highly pathogenic H5N1 inluenza virus using yeast surface display. Biochem Biophys Res Commun 409:253–259. doi: 10.1016/j.bbrc.2011.04.139 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hardwick KG, Boothroyd JC, Rudner AD, Pelham HRB (1992) Genes that allow yeast cells to grow in the absence of the HDEL receptor. EMBO J 11:4187–4195PubMedPubMedCentralGoogle Scholar
  16. Inokuma K, Hasunuma T, Kondo A (2014) Efficient yeast cell-surface display of exo- and endo-cellulase using the SED1 anchoring region and its original promoter. Biotechnol Biofuels 7:8. doi: 10.1186/1754-6834-7-8 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Jentoft N (1990) Why are proteins O-glycosylated? Trends Biochem Sci 15:161–169CrossRefGoogle Scholar
  18. Klis FM, Caro LHP, Vossen JH, Kapteyn JC, Ram AFJ, Montijn RC, van Berkel MAA, van der Ende H (1997) Identification and characterization of a major building block in the cell wall of Saccharomyces cerevisiae. Biochem Soc Trans 25:856–860. doi: 10.1042/bst0250856 CrossRefPubMedGoogle Scholar
  19. Komentani T, Yoshii H, Matsuno R (1996) Large-scale production of chiral alcohols with bakers’ yeast. J Mol Catal B Enzym 1:45–52. doi: 10.1016/1381-1177(95)00014-3 CrossRefGoogle Scholar
  20. Kuroda K, Ueda M (2006) Effective display of metallothionein tandem repeats on the bioadsorption of cadmium ion. Appl Microbiol Biotechnol 70:458–463. doi: 10.1007/s00253-005-0093-8 CrossRefPubMedGoogle Scholar
  21. Kuroda K, Ueda M (2011) Cell surface engineering of yeast for applications in white biotechnology. Biotechnol Lett 33:1–9. doi: 10.1007/s10529-010-0403-9 CrossRefPubMedGoogle Scholar
  22. Kuroda K, Ueda M (2013) Arming technology in yeast—novel strategy for whole-cell biocatalyst and protein engineering. Biomolecules 3:632–650. doi: 10.3390/biom3030632 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kuroda K, Matsui K, Higuchi S, Kotaka A, Sahara H, Hata Y, Ueda M (2009) Enhancement of display efficiency in yeast display system by vector engineering and gene disruption. Appl Microbiol Biotechnol 82:713–719. doi: 10.1007/s00253-008-1808-4 CrossRefPubMedGoogle Scholar
  24. Kuroda K, Nishitani T, Ueda M (2012) Specific adsorption of tungstate by cell surface display of the newly designed ModE mutant. Appl Microbiol Biotechnol 96:153–159. doi: 10.1007/s00253-012-4069-1 CrossRefPubMedGoogle Scholar
  25. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132. doi: 10.1016/0022-2836(82)90515-0 CrossRefPubMedGoogle Scholar
  26. Lee G-Y, Jung J-H, Seo D-H, Hansin J, Ha S-J, Cha J, Kim Y-S, Park C-S (2011) Isomaltulose production via yeast surface display of sucrose isomerase from Enterobacter sp. FMB-1 on Saccharomyces cerevisiae. Bioresour Technol 9:9179–9184. doi: 10.1016/j.biortech.2011.06.081 CrossRefGoogle Scholar
  27. Lin Y, Tsumuraya T, Wakabayashi T, Shiraga S, Fujii I, Kondo A, Ueda M (2003) Display of a functional hetero-oligomeric catalytic antibody on the yeast cell surface. Appl Microbiol Biotechnol 62:226–232. doi: 10.1007/s00253-003-1283-x CrossRefPubMedGoogle Scholar
  28. Lin Y, Shiraga S, Tsumuraya T, Matsumoto T, Kondo A, Fujii I, Ueda M (2004) Comparison of two forms of catalytic antibody displayed on yeast-cell surface. J Mol Catal B 28:241–246. doi: 10.1016/j.molcatb.2003.12.021 CrossRefGoogle Scholar
  29. Liu X, Zhang X, Zhang Z (2010) Cu, Zn-superoxide dismutase is required for cell wall structure and for tolerance to cell wall-perturbing agents in Saccharomyces cerevisiae. FEBS Lett 584:1245–1250. doi: 10.1016/j.febslet.2010.02.039 CrossRefPubMedGoogle Scholar
  30. Matano Y, Hasunuma T, Kondo A (2013) Cell recycle batch fermentation of high-solid lignocellulose using a recombinant cellulase-displaying yeast strain for high yield ethanol production in consolidated bioprocessing. Bioresour Technol 135:403–409. doi: 10.1016/j.biortech.2012.07.025 CrossRefPubMedGoogle Scholar
  31. Matsui K, Kuroda K, Ueda M (2009) Creation of a novel peptide endowing yeasts with acid tolerance using yeast cell-surface engineering. Appl Microbiol Biotechnol 82:105–113. doi: 10.1007/s00253-008-1761-2 CrossRefPubMedGoogle Scholar
  32. Matsumoto T, Fukuda H, Ueda M, Tanaka A, Kondo A (2002) Construction of yeast strains with high cell surface lipase activity by using novel display systems based on the Flo1p flocculation functional domain. Appl Environ Microbiol 68:4517–4522. doi: 10.1128/AEM.68.9.4517-4522.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Matsuura H, Yamamoto Y, Muraoka M, Akaishi K, Hori Y, Uemura K, Tsuji N, Harada K, Hirata K, Bamba T, Miyasaka H, Kuroda K, Ueda M (2013) Development of surface-engineered yeast cells displaying phytochelatin synthase and their application to cadmium biosensors by the combined use of pyrene-excimer fluorescence. Biotechnol Prog 29:1197–1202. doi: 10.1002/btpr.1789 CrossRefPubMedGoogle Scholar
  34. Medson C, Smallridge AJ, Trewhella MA (2001) Baker’s yeast activity in an organic solvent system. J Mol Cat B Enz 11:897–903. doi: 10.1016/S1381-1177(00)00154-5 CrossRefGoogle Scholar
  35. Molinari F, Occhiato EG, Aragozzini F, Guarna A (1998) Microbial biotransformation in water/organic solvent system. Enantioselective reduction of aromatic β and γ niroketones. Tetrahedron Asymmetry 9:1389–1394. doi: 10.1016/S0957-4166(98)00096-2 CrossRefGoogle Scholar
  36. Moore JC, Pollard DJ, Kosjek B, Devine PN (2007) Advances in the enzymatic reduction of ketones. Acc Chem Res 40:1412–1419. doi: 10.1021/ar700167a CrossRefPubMedGoogle Scholar
  37. Murai T, Ueda M, Yamamura M, Atomi H, Shibasaki Y, Kamasawa N, Osumi M, Amachi T, Tanaka A (1997) Construction of a starch-utilizing yeast by cell surface engineering. Appl Environ Microbiol 63:1362–1366PubMedPubMedCentralGoogle Scholar
  38. Murai T, Ueda M, Shibasaki Y, Kamasawa N, Osumi M, Imanaka T, Tanaka A (1999) Development of an arming yeast strain for efficient utilization of starch by co-display of sequential amylolytic enzymes on the cell surface. Appl Microbiol Biotechnol 51:65–70CrossRefPubMedGoogle Scholar
  39. Nakanishi A, Bae JG, Fukai K, Tokumoto N, Kuroda K, Ogawa J, Nakatani M, Shimizu S, Ueda M (2012) Effect of pretreatment of hydrothermally processed rice straw with laccase-displaying yeast on ethanol fermentation. Appl Microbiol Biotechnol 94:939–948. doi: 10.1007/s00253-012-3876-8 CrossRefPubMedGoogle Scholar
  40. Nishida N, Jing D, Kuroda K, Ueda M (2013a) Activation of signaling pathways related to cell wall integrity and multidrug resistance by organic solvent in Saccharomyces cerevisiae. Curr Genet 60:149–162. doi: 10.1007/s00294-013-0419-5 CrossRefPubMedGoogle Scholar
  41. Nishida N, Ozato N, Matsui K, Kuroda K, Ueda M (2013b) ABC transporters and cell wall proteins involved in organic solvent tolerance in Saccharomyces cerevisiae. J Biotechnol 165:145–152. doi: 10.1016/j.biotec.2013.03.003 CrossRefPubMedGoogle Scholar
  42. Ota M, Sakuragi H, Morisaka H, Kuroda K, Miyake H, Tamaru Y, Ueda M (2013) Display of Clostridium cellulovorans xylose isomerase on the cell surface of Saccharomyces cerevisiae and its direct application to xylose fermentation. Biotechnol Prog 29:346–351. doi: 10.1002/btpr.1700 CrossRefPubMedGoogle Scholar
  43. Pscheidt B, Glieder A (2008) Yeast cell factories for fine chemical and API production. Microb Cell Fact 7:25. doi: 10.1186/1475-2859-7-25 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Puthenveetil S, Liu DS, White KA, Thompson S, Ting AY (2009) Yeast display evolution of a kinetically efficient 13-amino acid substrate for lipoic acid ligase. J Am Chem Soc 131:16430–16438. doi: 10.1021/ja904596f CrossRefPubMedPubMedCentralGoogle Scholar
  45. Roy A, Lu CF, Marykwas DL, Lipke PN, Kurjan J (1991) The AGA1 product is involved in cell surface attachment of the Saccharomyces cerevisiae cell adhesion glycoprotein a-agglutinin. Mol Cell Biol 11:4196–4206. doi: 10.1128/MCB.11.8.4196 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Sangster J (1989) Octanol-water partition coefficients of simple organic compounds. J Phys Chem Ref Data 18:1111. doi: 10.1063/1.555833 CrossRefGoogle Scholar
  47. Sato N, Matsumoto T, Ueda M, Tanaka A, Fukuda H, Kondo A (2002) Long anchor using Flo1 protein enhances reactivity of cell surface-displayed glucoamylase to polymer substrates. Appl Microbiol Biotechnol 60:469–474. doi: 10.1007/s00253-002-1121-6 CrossRefPubMedGoogle Scholar
  48. Schreuder MP, Mooren ATA, Toschka HY, Verrips CT, Klis FM (1996) Immobilizing proteins on the surface of yeast cells. Trends Biotechnol 14:115–120CrossRefPubMedGoogle Scholar
  49. Servi S (1990) Baker’s yeast as a reagent in organic synthesis. Synthesis 1990(1):1–25. doi: 10.1055/s-1990-26775 CrossRefGoogle Scholar
  50. Shibasaki S, Ueda M, Ye K, Shimizu K, Kamasawa N, Osumi M, Tanaka A (2001a) Creation of cell surface-engineered yeast that display different fluorescent proteins in response to the glucose concentration. Appl Microbiol Biotechnol 57:528–533. doi: 10.1007/s002530100767 CrossRefPubMedGoogle Scholar
  51. Shibasaki S, Ninomiya Y, Ueda M, Iwahashi M, Katsuragi T, Tani Y, Harashima S, Tanaka A (2001b) Intelligent yeast strains with the ability to self-monitor the concentrations of intra- and extracellular phosphate or ammonium ion by emission of fluorescence from the cell surface. Appl Microbiol Biotechnol 57:702–707. doi: 10.1007/s00253-001-0849-8 CrossRefPubMedGoogle Scholar
  52. Shibasaki S, Tanaka A, Ueda M (2003) Development of combinatorial bioengineering using yeast cell surface display—order-made design of cell and protein for bio-monitoring. Biosens Bioelectron 19:123–130. doi: 10.1016/S0956-5663(03)00169-6 CrossRefPubMedGoogle Scholar
  53. Shibasaki S, Maeda H, Ueda M (2009) Molecular display technology using yeast-arming technology. Anal Sci 25:41–49. doi: 10.2116/analsci.25.41 CrossRefPubMedGoogle Scholar
  54. Shibasaki S, Aoki W, Nomura T, Miyoshi A, Tafuku S, Sewaki T, Ueda M (2013) An oral vaccine against candidiasis generated by a yeast molecular display system. Pathog Dis 69:262–268. doi: 10.1111/2049-632X.12068 CrossRefPubMedGoogle Scholar
  55. Sikkema J, de Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222PubMedPubMedCentralGoogle Scholar
  56. Takayama K, Suye S, Kuroda K, Ueda M, Kitaguchi T, Tsuchiyama K, Fukuda T, Chen W, Mulchandani A (2006) Surface display of organophosphorus hydrolase on Saccharomyces cerevisiae. Biotechnol Prog 22:939–943. doi: 10.1021/bp060107b CrossRefPubMedGoogle Scholar
  57. Tamaru Y, Ohtsuka M, Kato K, Manabe S, Kuroda K, Sanada M, Ueda M (2006) Application of the arming system for the expression of the 380R antigen from red sea bream iridovirus (RSIV) on the surface of yeast cells: a first step for the development of an oral vaccine. Biotechnol Prog 22:949–953. doi: 10.1021/bp060130x CrossRefPubMedGoogle Scholar
  58. Tanaka T, Yamada R, Ogino C, Kondo A (2012) Recent developments in yeast cell surface display toward extended applications in biotechnology. Appl Microbiol Biotechnol 95:577–591. doi: 10.1007/s00253-012-4175-0 CrossRefPubMedGoogle Scholar
  59. Tanaka T, Matsumoto S, Yamada M, Yamada R, Matsuda F, Kondo A (2013) Display of active β-glucosidase on the surface of Schizosaccharomyces pombe cells using novel anchor proteins. Appl Microbiol Biotechnol 97:4343–4352. doi: 10.1007/s00253-013-4733-0 CrossRefPubMedGoogle Scholar
  60. Tanino T, Fukuda H, Kondo A (2006) Construction of a Pichia pastoris cell-surface display using Flo1p anchor system. Biotechnol Prog 22:989–993. doi: 10.1021/bp060133+ CrossRefPubMedGoogle Scholar
  61. Van der Vaart JM, Caro HP, Chapman JW, Klis FM, Verrips CT (1995) Identification of three mannoproteins in the cell wall of Saccharomyces cerevisiae. J Bacteriol 177:3104–3110CrossRefPubMedPubMedCentralGoogle Scholar
  62. Vermue M, Sikkema J, Verheul A, Bakker R, Tramper J (1993) Toxicity of homologous series of organic solvent for the gram-positive bacteria Arthrobacter and Nocardia sp. and the gram-negative bacteria Acinetobacter and Pseudomonas sp. Biotechnol Bioeng 42:747–758. doi: 10.1002/bit.260420610 CrossRefPubMedGoogle Scholar
  63. Wang Z, Mathias A, Stavrou S, Neville DM Jr (2005) A new yeast display vector permitting free scFv amino termini can augment ligand binding affinities. Prot Eng Des Sel 18:337–343. doi: 10.1093/protein/gzi036 CrossRefGoogle Scholar
  64. Wang Q, Li L, Chen M, Qi Q, Wang PG (2007) Construction of a novel system for cell surface display of heterologous proteins on Pichia pastoris. Biotechnol Lett 29:1561–1566. doi: 10.1007/s10529-007-9430-6 CrossRefPubMedGoogle Scholar
  65. Wang Q, Li L, Chen M, Qi Q, Wang PG (2008) Construction of a novel Pichia pastoris cell-surface display system based on the cell wall protein Pir1. Curr Microbiol 56:352–357. doi: 10.1007/s00284-007-9089-1 CrossRefPubMedGoogle Scholar
  66. Washida M, Takahashi S, Ueda M, Tanaka A (2001) Spacer-mediated display of active lipase on the yeast cell surface. Appl Microbiol Biotechnol 56:681–686. doi: 10.1007/s002530100718 CrossRefPubMedGoogle Scholar
  67. Wasilenko JL, Sarmento L, Spatz S, Pantin-Jackwood M (2010) Cell surface display of highly pathogenic avian influenza virus hemagglutinin on the surface of Pichia pastoris cells using α-agglutinin for production of oral vaccines. Biotechnol Prog 26:542–547. doi: 10.1002/btpr.343 PubMedGoogle Scholar
  68. Watari J, Takata Y, Ogawa M, Sahara H, Koshino M, Onnela ML, Airaksinen U, Jaatinen R, Penttilä M, Keranen S (1994) Molecular cloning and analysis of the yeast flocculation gene FLO1. Yeast 10:211–225. doi: 10.1002/yea.320100208 CrossRefPubMedGoogle Scholar
  69. Yamada R, Nakatani Y, Ogino C, Kondo A (2013) Efficient direct ethanol production from cellulose by cellulase- and cellodextrin transporter-co-expressing Saccharomyces cerevisiae. AMB Express 3:34CrossRefPubMedPubMedCentralGoogle Scholar
  70. Yang J, Dang H, Lu JR (2012) Improving genetic immobilization of a cellulose on yeast cell surface for bioethanol production using cellulose. J Basic Microbiol 52:1–9. doi: 10.1002/jobm.201100602 CrossRefGoogle Scholar
  71. Yasui M, Shibasaki S, Kuroda K, Ueda M, Kawada N, Nishikawa J, Nishihara T, Tanaka A (2002) An arming yeast with the ability to entrap fluorescent 17β-estradiol on the cell surface. Appl Microbiol Biotechnol 59:329–331. doi: 10.1007/s00253-002-1019-3 CrossRefPubMedGoogle Scholar
  72. Yuzbasheva EY, Yuzbashev TV, Laptev IA, Konstantinova TK, Sineoky SP (2011) Efficient cell surface display of Lip2 lipase using C-domains of glycosylphosphatidylinositol-anchored cell wall proteins of Yarrowia lipolytica. Appl Microbiol Biotechnol 91:645–654. doi: 10.1007/s00253-011-3265-8 CrossRefPubMedGoogle Scholar
  73. Zou W, Ueda M, Tanaka A (2002) Screening of a molecule endowing Saccharomyces cerevisiae with n-nonane-tolerance from a combinatorial random protein library. Appl Microbiol Biotechnol 58:806–812. doi: 10.1007/s00253-002-0961-4 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Departament de Bioquímica i Biologia Molecular, Facultat de Ciències BiològiquesUniversitat de ValènciaBurjassot (València)Spain
  2. 2.Departament de Química Orgànica, Facultat de FarmàciaUniversitat de ValènciaBurjassot (València)Spain

Personalised recommendations