Applied Microbiology and Biotechnology

, Volume 99, Issue 2, pp 969–980 | Cite as

Comparison of the microbial communities in solid-state anaerobic digestion (SS-AD) reactors operated at mesophilic and thermophilic temperatures

  • Yueh-Fen Li
  • Michael C. Nelson
  • Po-Hsu Chen
  • Joerg Graf
  • Yebo Li
  • Zhongtang Yu
Environmental biotechnology

Abstract

The microbiomes involved in liquid anaerobic digestion process have been investigated extensively, but the microbiomes underpinning solid-state anaerobic digestion (SS-AD) are poorly understood. In this study, microbiome composition and temporal succession in batch SS-AD reactors, operated at mesophilic or thermophilic temperatures, were investigated using Illumina sequencing of 16S rRNA gene amplicons. A greater microbial richness and evenness were found in the mesophilic than in the thermophilic SS-AD reactors. Firmicutes accounted for 60 and 82 % of the total Bacteria in the mesophilic and in the thermophilic SS-AD reactors, respectively. The genus Methanothermobacter dominated the Archaea in the thermophilic SS-AD reactors, while Methanoculleus predominated in the mesophilic SS-AD reactors. Interestingly, the data suggest syntrophic acetate oxidation coupled with hydrogenotrophic methanogenesis as an important pathway for biogas production during the thermophilic SS-AD. Canonical correspondence analysis (CCA) showed that temperature was the most influential factor in shaping the microbiomes in the SS-AD reactors. Thermotogae showed strong positive correlation with operation temperature, while Fibrobacteres, Lentisphaerae, Spirochaetes, and Tenericutes were positively correlated with daily biogas yield. This study provided new insight into the microbiome that drives SS-AD process, and the findings may help advance understanding of the microbiome in SS-AD reactors and the design and operation of SS-AD systems.

Keywords

Illumina sequencing 16S rRNA gene Microbiome Solid-state anaerobic digester 

Supplementary material

253_2014_6036_MOESM1_ESM.xlsx (33 kb)
Online Resource 1(XLSX 33 kb)
253_2014_6036_MOESM2_ESM.xlsx (16 kb)
Online Resource 2(XLSX 15 kb)

References

  1. Amani T, Nosrati M, Sreekrishnan T (2010) Anaerobic digestion from the viewpoint of microbiological, chemical, and operational aspects—a review. Environ Rev 18:255–278CrossRefGoogle Scholar
  2. Ariesyady HD, Ito T, Okabe S (2007) Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester. Water Res 41:1554–1568CrossRefPubMedGoogle Scholar
  3. Briones AM, Daugherty BJ, Angenent LT, Rausch KD, Tumbleson ME, Raskin L (2007) Microbial diversity and dynamics in multi- and single-compartment anaerobic bioreactors processing sulfate-rich waste streams. Environ Microbiol 9:93–106CrossRefPubMedGoogle Scholar
  4. Brown D, Shi J, Li Y (2012) Comparison of solid-state to liquid anaerobic digestion of lignocellulosic feedstocks for biogas production. Bioresour Technol 124:379–386CrossRefPubMedGoogle Scholar
  5. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336CrossRefPubMedPubMedCentralGoogle Scholar
  6. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chen CH (2002) Generalized association plots: information visualization via iteratively generated correlation matrices. Stat Sin 12:7–29Google Scholar
  8. Cho SK, Im WT, Kim DH, Kim MH, Shin HS, Oh SE (2013) Dry anaerobic digestion of food waste under mesophilic conditions: performance and methanogenic community analysis. Bioresour Technol 131:210–217CrossRefPubMedGoogle Scholar
  9. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dodsworth JA, Blainey PC, Murugapiran SK, Swingley WD, Ross CA, Tringe SG, Chain PS, Scholz MB, Lo CC, Raymond J, Quake SR, Hedlund BP (2013) Single-cell and metagenomic analyses indicate a fermentative and saccharolytic lifestyle for members of the OP9 lineage. Nat Commun 4:1854CrossRefPubMedPubMedCentralGoogle Scholar
  11. Gerardi MH (2003) The microbiology of anaerobic digesters. Wiley, HobokenCrossRefGoogle Scholar
  12. Goberna M, Insam H, Franke-Whittle IH (2009) Effect of biowaste sludge maturation on the diversity of thermophilic bacteria and archaea in an anaerobic reactor. Appl Environ Microbiol 75:2566–2572CrossRefPubMedPubMedCentralGoogle Scholar
  13. Graber JR, Breznak JA (2004) Physiology and nutrition of Treponema primitia, an H2/CO2-acetogenic spirochete from termite hindguts. Appl Environ Microbiol 70:1307–1314CrossRefPubMedPubMedCentralGoogle Scholar
  14. Guendouz J, Buffière P, Cacho J, Carrère M, Delgenes JP (2010) Dry anaerobic digestion in batch mode: design and operation of a laboratory-scale, completely mixed reactor. Waste Manag 30:1768–1771CrossRefPubMedGoogle Scholar
  15. Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, Ciulla D, Tabbaa D, Highlander SK, Sodergren E, Methé B, DeSantis TZ, Human Microbiome Consortium, Petrosino JF, Knight R, Birren BW (2011) Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res 21:494–504CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hattori S (2008) Syntrophic acetate-oxidizing microbes in methanogenic environments. Microbes Environ 23:118–127CrossRefPubMedGoogle Scholar
  17. Hattori S, Kamagata Y, Hanada S, Shoun H (2000) Thermacetogenium phaeum gen. nov., sp. nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium. Int J Syst Evol Microbiol 4:1601–1609CrossRefGoogle Scholar
  18. Hernandez-Eugenio G, Fardeau ML, Cayol JL, Patel BK, Thomas P, Macarie H, Garcia JL, Ollivier B (2002) Sporanaerobacter acetigenes gen. nov., sp. nov., a novel acetogenic, facultatively sulfur-reducing bacterium. Int J Syst Evol Microbiol 52:1217–1223PubMedGoogle Scholar
  19. Hori T, Haruta S, Ueno Y, Ishii M, Igarashi Y (2006) Dynamic transition of a methanogenic population in response to the concentration of volatile fatty acids in a thermophilic anaerobic digester. Appl Environ Microbiol 72:1623–1630CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hugenholtz P, Pitulle C, Hershberger KL, Pace NR (1998) Novel division level bacterial diversity in a yellowstone hot spring. J Bacteriol 180:366–376PubMedPubMedCentralGoogle Scholar
  21. Krakat N, Westphal A, Schmidt S, Scherer P (2010) Anaerobic digestion of renewable biomass: thermophilic temperature governs methanogen population dynamics. Appl Environ Microbiol 76:1842–1850CrossRefPubMedPubMedCentralGoogle Scholar
  22. Levén L, Eriksson ARB, Schnürer A (2007) Effect of process temperature on bacterial and archaeal communities in two methanogenic bioreactors treating organic household waste. FEMS Microbiol Ecol 59:683–693CrossRefPubMedGoogle Scholar
  23. Li Y, Park SY, Zhu J (2011) Solid-state anaerobic digestion for methane production from organic waste. Renew Sustain Energy Rev 15:821–826CrossRefGoogle Scholar
  24. Li A, Chu Y, Wang X, Ren L, Yu J, Liu X, Yan J, Zhang L, Wu S, Li S (2013) A pyrosequencing-based metagenomic study of methane-producing microbial community in solid-state biogas reactor. Biotechnol Biofuels 6:3CrossRefPubMedPubMedCentralGoogle Scholar
  25. Li Y-F, Chen P-H, Yu Z (2014) Spatial and temporal variations of microbial community in a mixed plug-flow loop reactor fed with dairy manure. Microb Biotechnol 7:332–346CrossRefPubMedPubMedCentralGoogle Scholar
  26. Liu K, Tang YQ, Matsui T, Morimura S, Wu XL, Kida K (2009) Thermophilic anaerobic co-digestion of garbage, screened swine and dairy cattle manure. J Biosci Bioeng 107:54–60CrossRefPubMedGoogle Scholar
  27. Maune MW, Tanner RS (2012) Description of Anaerobaculum hydrogeniformans sp. nov., an anaerobe that produces hydrogen from glucose, and emended description of the genus Anaerobaculum. Int J Syst Evol Microbiol 62:832–838CrossRefPubMedGoogle Scholar
  28. Montero B, Garcia-Morales JL, Sales D, Solera R (2008) Evolution of microorganisms in thermophilic-dry anaerobic digestion. Bioresour Technol 99:3233–3243CrossRefPubMedGoogle Scholar
  29. Montero B, Garcia-Morales JL, Sales D, Solera R (2010) Evolution of butyric acid and the methanogenic microbial population in a thermophilic dry anaerobic reactor. Waste Manag 30:1790–1797CrossRefPubMedGoogle Scholar
  30. Narihiro T, Sekiguchi Y (2007) Microbial communities in anaerobic digestion processes for waste and wastewater treatment: a microbiological update. Curr Opin Biotechnol 18:273–278CrossRefPubMedGoogle Scholar
  31. Nelson MC, Morrison HG, Benjamino J, Grim SL, Graf J (2014) Analysis, optimization and verification of illumina-generated 16s rRNA gene amplicon surveys. PLoS ONE 9(4):e94249. doi:10.1371/journal.pone.0094249 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Niu L, Song L, Liu X, Dong X (2009) Tepidimicrobium xylanilyticum sp. nov., an anaerobic xylanolytic bacterium, and emended description of the genus Tepidimicrobium. Int J Syst Evol Microbiol 59:2698–2701CrossRefPubMedGoogle Scholar
  33. O’Flaherty V, Collins G, Mahony T (2006) The microbiology and biochemistry of anaerobic bioreactors with relevance to domestic sewage treatment. Rev Environ Sci Biotechnol 5:39–55CrossRefGoogle Scholar
  34. Phitsuwan P, Tachaapaikoon C, Kosugi A, Mori Y, Kyu KL, Ratanakhanokchai K (2010) A cellulolytic and xylanolytic enzyme complex from an alkalothermoanaerobacterium, Tepidimicrobium xylanilyticum BT14. J Microbiol Biotechnol 20:893–903CrossRefPubMedGoogle Scholar
  35. Pycke BF, Etchebehere C, Van de Caveye P, Negroni A, Verstraete W, Boon N (2011) A time-course analysis of four full-scale anaerobic digesters in relation to the dynamics of change of their microbial communities. Water Sci Technol 63:769–775CrossRefPubMedGoogle Scholar
  36. Qiao JT, Qiu YL, Yuan XZ, Shi XS, Xu XH, Guo RB (2013) Molecular characterization of bacterial and archaeal communities in a full-scale anaerobic reactor treating corn straw. Bioresour Technol 143:512–518CrossRefPubMedGoogle Scholar
  37. Ramette A (2007) Multivariate analyses in microbial ecology. FEMS Microbiol Ecol 62:142–160CrossRefPubMedPubMedCentralGoogle Scholar
  38. Rivière D, Desvignes V, Pelletier E, Chaussonnerie S, Guermazi S, Weissenbach J, Li T, Camacho P, Sghir A (2009) Toward the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME J 3:700–714CrossRefPubMedGoogle Scholar
  39. Sasaki D, Hori T, Haruta S, Ueno Y, Ishii M, Igarashi Y (2011) Methanogenic pathway and community structure in a thermophilic anaerobic digestion process of organic solid waste. J Biosci Bioeng 111:41–46CrossRefPubMedGoogle Scholar
  40. Schnürer A, Nordberg A (2008) Ammonia, a selective agent for methane production by syntrophic acetate oxidation at mesophilic temperature. Water Sci Technol 57:735–740CrossRefPubMedGoogle Scholar
  41. Sekiguchi Y, Takahashi H, Kamagata Y, Ohashi A, Harada H (2001) In situ detection, isolation, and physiological properties of a thin filamentous microorganism abundant in methanogenic granular sludges: a novel isolate affiliated with a clone cluster, the green non-sulfur bacteria, subdivision I. Appl Environ Microbiol 67:5740–5749CrossRefPubMedPubMedCentralGoogle Scholar
  42. Shi J, Wang Z, Stiverson JA, Yu Z, Li Y (2013) Reactor performance and microbial community dynamics during solid-state anaerobic digestion of corn stover at mesophilic and thermophilic conditions. Bioresour Technol 136:574–581CrossRefPubMedGoogle Scholar
  43. Shigematsu T, Tang Y, Kobayashi T, Kawaguchi H, Morimura S, Kida K (2004) Effect of dilution rate on metabolic pathway shift between aceticlastic and nonaceticlastic methanogenesis in chemostat cultivation. Appl Environ Microbiol 70:4048–4052CrossRefPubMedPubMedCentralGoogle Scholar
  44. Simankova MV, Chernych NA, Osipov GA, Zavarzin GA (1993) Halocella cellulolytica gen. nov., sp. nov., a new obligately anaerobic, halophilic, cellulolytic bacterium. Syst Appl Microbiol 16:385–389CrossRefGoogle Scholar
  45. Slobodkin AI, Tourova TP, Kostrikina NA, Lysenko AM, German KE, Bonch-Osmolovskaya EA, Birkeland NK (2006) Tepidimicrobium ferriphilum gen. nov., sp. nov., a novel moderately thermophilic, Fe(III)-reducing bacterium of the order Clostridiales. Int J Syst Evol Microbiol 56:369–372CrossRefPubMedGoogle Scholar
  46. Sundberg C, Al-Soud WA, Larsson M, Alm E, Yekta SS, Svensson BH, Sørensen SJ, Karlsson A (2013) 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters. FEMS Microbiol Ecol 85:612–626CrossRefPubMedGoogle Scholar
  47. Tang YQ, Ji P, Hayashi J, Koike Y, Wu XL, Kida K (2011) Characteristic microbial community of a dry thermophilic methanogenic digester: its long-term stability and change with feeding. Appl Microbiol Biotechnol 91:1447–1461CrossRefPubMedGoogle Scholar
  48. Vartoukian SR, Palmer RM, Wade WG (2007) The division “Synergistes”. Anaerobe 13:99–106CrossRefPubMedGoogle Scholar
  49. Vick TJ, Dodsworth JA, Costa KC, Shock EL, Hedlund BP (2010) Microbiology and geochemistry of Little Hot Creek, a hot spring environment in the Long Valley Caldera. Geobiology 8:140–154CrossRefPubMedGoogle Scholar
  50. Wasserfallen A, Nolling J, Pfister P, Reeve J, de Macario EC (2000) Phylogenetic analysis of 18 thermophilic Methanobacterium isolates supports the proposals to create a new genus, Methanothermobacter gen. nov., and to reclassify several isolates in three species, Methanothermobacter thermautotrophicus comb. nov., Methanothermobacter wolfeii comb. nov., and Methanothermobacter marburgensis sp. nov. Int J Syst Evol Microbiol 50:43–53CrossRefPubMedGoogle Scholar
  51. Wu HM, Tien YJ, Chen C (2010) GAP: a graphical environment for matrix visualization and cluster analysis. Comput Stat Data Anal 54:767–778CrossRefGoogle Scholar
  52. Yu Z, Morrison M (2004) Improved extraction of PCR-quality community DNA from digesta and fecal samples. Biotechniques 36:808–812PubMedGoogle Scholar
  53. Yu Z, Morrison M, Schanbacher FL (2010) Production and utilization of methane biogas as renewable fuel. In: Vertès AA, Qureshi N, Blaschek HP, Yukawa H (eds) Biomass to biofuels: strategies for global industries. John Wiley & Sons, Inc, Hoboken, pp 403–433CrossRefGoogle Scholar
  54. Zahedi S, Sales D, Romero LI, Solera R (2013a) Optimisation of single-phase dry-thermophilic anaerobic digestion under high organic loading rates of industrial municipal solid waste: population dynamics. Bioresour Technol 146:109–117CrossRefPubMedGoogle Scholar
  55. Zahedi S, Sales D, Romero LI, Solera R (2013b) Optimisation of the two-phase dry-thermophilic anaerobic digestion process of sulphate-containing municipal solid waste: population dynamics. Bioresour Technol 148:443–452CrossRefPubMedGoogle Scholar
  56. Zinder SH (1993) Physiological ecology of methanogens. In: Ferry JG (ed) Methanogenesis. Chapman & Hall, New York, pp 128–206CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Yueh-Fen Li
    • 1
  • Michael C. Nelson
    • 4
  • Po-Hsu Chen
    • 2
  • Joerg Graf
    • 4
  • Yebo Li
    • 5
  • Zhongtang Yu
    • 1
    • 3
  1. 1.Environmental Science Graduate ProgramThe Ohio State UniversityColumbusUSA
  2. 2.Department of StatisticsThe Ohio State UniversityColumbusUSA
  3. 3.Department of Animal SciencesThe Ohio State UniversityColumbusUSA
  4. 4.Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsUSA
  5. 5.Department of Food, Agricultural and Biological EngineeringThe Ohio State University/Ohio Agricultural Research and Development CenterWoosterUSA

Personalised recommendations