Applied Microbiology and Biotechnology

, Volume 98, Issue 21, pp 9059–9072 | Cite as

Coenzyme A-transferase-independent butyrate re-assimilation in Clostridium acetobutylicum—evidence from a mathematical model

  • Thomas Millat
  • Christine Voigt
  • Holger Janssen
  • Clare M. Cooksley
  • Klaus Winzer
  • Nigel P. Minton
  • Hubert Bahl
  • Ralf-Jörg Fischer
  • Olaf Wolkenhauer
Applied microbial and cell physiology


The hetero-dimeric CoA-transferase CtfA/B is believed to be crucial for the metabolic transition from acidogenesis to solventogenesis in Clostridium acetobutylicum as part of the industrial-relevant acetone-butanol-ethanol (ABE) fermentation. Here, the enzyme is assumed to mediate re-assimilation of acetate and butyrate during a pH-induced metabolic shift and to faciliate the first step of acetone formation from acetoacetyl-CoA. However, recent investigations using phosphate-limited continuous cultures have questioned this common dogma. To address the emerging experimental discrepancies, we investigated the mutant strain Cac-ctfA398s::CT using chemostat cultures. As a consequence of this mutation, the cells are unable to express functional ctfA and are thus lacking CoA-transferase activity. A mathematical model of the pH-induced metabolic shift, which was recently developed for the wild type, is used to analyse the observed behaviour of the mutant strain with a focus on re-assimilation activities for the two produced acids. Our theoretical analysis reveals that the ctfA mutant still re-assimilates butyrate, but not acetate. Based upon this finding, we conclude that C. acetobutylicum possesses a CoA-tranferase-independent butyrate uptake mechanism that is activated by decreasing pH levels. Furthermore, we observe that butanol formation is not inhibited under our experimental conditions, as suggested by previous batch culture experiments. In concordance with recent batch experiments, acetone formation is abolished in chemostat cultures using the ctfa mutant.


Clostridium acetobutylicum ctfA mutant Acid re-assimilation pH-induced metabolic shift Mathematical modelling 



The authors acknowledge support by the German Federal Ministry for Education and Research (BMBF FKZ 0315782D) and by the Biotechnology and Biological Sciences Research Council (UK) (BBSRC No. BB/I004475/1), as part of the European Transnational Network ‘Systems Biology of Microorganisms’ (SysMo) within the COSMIC consortium. N.P.M. also acknowledges funding received from the Biotechnology and Biological Sciences Research Council, as part of the BBSRC Sustainable Bioenergy Centre (BSBEC) initiative, for the programme ‘Second Generation, Sustainable Biofuels’ (BBSRC No. BB/G016224/1). We thank Ulf W. Liebal and Carola Berger for their critical comments and fruitful discussions. The responsibility for the content of this manuscript lies with the authors.

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary material

253_2014_5987_MOESM1_ESM.pdf (155 kb)
ESM 1 (PDF 154 kb)


  1. Al-Hinai M, Fast A, Papoutsakis E (2012) A novel system for efficient isolation of double-crossover allelic exchange mutants in Clostridium enabling markerless chromosomal gene deletions and DNA integration. Appl Environ Microbiol 78:8112–8121. doi: 10.1128/AEM.02214-12 PubMedCrossRefPubMedCentralGoogle Scholar
  2. Andersch W, Bahl H, Gottschalk G (1983) Level of enzymes involved in acetate, butyrate, acetone and butanol formation by Clostridium acetobutylicum. Appl Microbiol Biotechnol 18:327–332. doi: 10.1007/BF00504740 CrossRefGoogle Scholar
  3. Bahl H, Andersch W, Gottschalk G (1982) Continuous production of acetone and butanol by Clostridium acetobutylicum in a two-stage phosphate limited chemostat. Appl Microbiol Biotechnol 15:201–205. doi: 10.1007/BF00499955 CrossRefGoogle Scholar
  4. Bahl H, Gottwald M, Kuhn A, Rale V, Andersch W, Gottschalk G (1986) Nutritional factors affecting the ratio of solvents produced by Clostridium acetobutylicum. Appl Environ Microbiol 52:169–172PubMedPubMedCentralGoogle Scholar
  5. Caspi R, Altman T, Dreher K, Fulcher C, Subhraveti P, Keseler I, Kothari A, Krummenacker M, Latendresse M, Mueller L, Ong Q, Paley S, Pujar A, Shearer A, Travers M, Weerasinghe D, Zhang P, Karp P (2012) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 40:D742–D753. doi: 10.1093/nar/gkr1014 PubMedCrossRefPubMedCentralGoogle Scholar
  6. Clarke K, Hansford G, Jones D (1988) Nature and significance of oscillatory behavior during solvent production by Clostridium acetobutylicum in continuous culture. Biotechnol Bioeng 32:538–544. doi: 10.1002/bit.260320417 PubMedCrossRefGoogle Scholar
  7. Cooksley C, Zhang Y, Wang H, Redl S, Winzer K, Minton N (2012) Targeted mutagenesis of the Clostridium acetobutylicum acetone-butanol-ethanol fermentation pathway. Metab Eng 14:630–641. doi: 10.1016/j.ymben.2012.09.001 PubMedCrossRefGoogle Scholar
  8. Dale J, Popescu L, Karp P (2010) Machine learning methods for metabolic pathway prediction. BMC Bioinforma 11:15. doi: 10.1186/1471-2105-11-15 CrossRefGoogle Scholar
  9. Desai R, Harris L, Welker N, Papoutsakis E (1999) Metabolic flux analysis elucidates the importance of the acid-formation pathways in regulating solvent production by Clostridium acetobutylicum. Metab Eng 1:206–213. doi: 10.1006/mben.1999.0118 PubMedCrossRefGoogle Scholar
  10. Dürre P, Dürre (2005) Formation of solvents in Clostridia. In: Handbook on Costridia. CRC Press, Boca Raton, pp 671–693CrossRefGoogle Scholar
  11. Dürre P (2007) Biobutanol: an attractive biofuel. Biotechnol J 2(12):1525–1534. doi: 10.1002/biot.200700168 PubMedCrossRefGoogle Scholar
  12. Dürre P, Fischer RJ, Kuhn A, Lorenz K, Schreiber W, Stürzenhofecker B, Ullmann S, Winzer K, Sauer U (1995) Solventogenic enzymes of Clostridium acetobutylicum: catalytic properties, genetic organization, and transcriptional regulation. FEMS Microbiol Rev 17:251–262. doi: 10.1111/j.1574-6976.1995.tb00209.x PubMedCrossRefGoogle Scholar
  13. Fiedler T, Mix M, Meyer U, Mikkat S, Glocker M, Bahl H, Fischer RJ (2008) The two-component system PhoPR of Clostridium acetobutylicum is involved in phosphate-dependent gene regulation. J Bacteriol 190:6559–6567. doi: 10.1128/JB.00574-08 PubMedCrossRefPubMedCentralGoogle Scholar
  14. Fischer RJ, Oehmcke S, Meyer U, Mix M, Schwarz K, Fiedler T, Bahl H (2006) Transcription of the pst operon of Clostridium acetobutylicum is dependent on phosphate concentration and pH. J Bacteriol 188:5469–5478. doi: 10.1128/JB.00491-06 PubMedCrossRefPubMedCentralGoogle Scholar
  15. Fontaine L, Meynial-Salles I, Girbal L, Yang X, Croux C, Soucaille P (2002) Molecular characterization and transcriptional analysis of adhE2, the gene encoding the NADH-dependent aldehyde/alcohol dehydrogenase responsible for butanol production in alcohologenic cultures of Clostridium acetobutylicum ATCC 824. J Bacteriol 184:821–830. doi: 10.1128/JB.184.3.821-830.2002 PubMedCrossRefPubMedCentralGoogle Scholar
  16. Girbal L, Soucaille P (1994) Regulation of Clostridium acetobutylicum metabolism as revealed by mixed-substrate steady-state continuous cultures: role of NADH/NAD ratio and ATP pool. J Bacteriol 176:6433–6438PubMedPubMedCentralGoogle Scholar
  17. Grimmler C, Janssen H, Krauße D, Fischer RJ, Bahl H, Dürre P, Liebl W, Ehrenreich A (2011) Genome-wide gene expression analysis of the switch between acidogenesis and solventogenesis in continuous cultures of Clostridium acetobutylicum. J Mol Microbiol Biotechnol 20:1–15. doi: 10.1159/000320973 PubMedCrossRefGoogle Scholar
  18. Grupe H, Gottschalk G (1992) Physiological events in Clostridium acetobutylicum during the shift from acidogenesis to solventogenesis in continuous culture and presentation of a model for shift induction. Appl Environ Microbiol 58:3896–3902PubMedPubMedCentralGoogle Scholar
  19. Han B, Gopalan V, Ezeji T (2011) Acetone production in solventogenic Clostridium species: new insights from non-enzymatic decarboxylation of acetoacetate. Appl Microbiol Biotechnol 91:565–576. doi: 10.1007/s00253-011-3276-5 PubMedCrossRefGoogle Scholar
  20. Hartmanis M, Gatenbeck S (1984) Intermediary metabolism in Clostridium acetobutylicum: levels of enzymes involved in the formation of acetate and butyrate. Appl Environ Microbiol 47:1277–1283PubMedPubMedCentralGoogle Scholar
  21. Hartmanis M, Klason T, Gatenbeck S (1984) Uptake and activation of acetate and butyrate in Clostridium acetobutylicum. Appl Microbiol Biotechnol 20:66–71. doi: 10.1007/BF00254648 Google Scholar
  22. Haus S, Jabbari S, Millat T, Janssen H, Fischer RJ, Bahl H, King J, Wolkenhauer O (2011) A systems biology approach to investigate the effect of pH-induced gene regulation on solvent production by Clostridium acetobutylicum in continuous culture. BMC Syst Biol 5:10. doi: 10.1186/1752-0509-5-10 PubMedCrossRefPubMedCentralGoogle Scholar
  23. Ho MC, Menetret JF, Tsuruta H, Allen K (2009) The origin of the electrostatic perturbation in acetoacetate decarboxylase. Nature 459:393–397. doi: 10.1038/nature07938 PubMedCrossRefGoogle Scholar
  24. Hoskisson P, Hobbs G (2005) Continuous culture—making a comeback? Microbiol 151:3153–3159. doi: 10.1099/mic.0.27924-0 CrossRefGoogle Scholar
  25. Hüsemann M, Papoutsakis E (1989) Comparison between in vivo and in vitro enzyme activities in continuous and batch fermentations of Clostridium acetobutylicum. Appl Microbiol Biotechnol 30:585–595. doi: 10.1007/BF00255364 Google Scholar
  26. Janssen H, Döring C, Ehrenreich A, Voigt B, Hecker M, Bahl H, Fischer RJ (2010) A proteomic and transcriptional view of acidogenesis and solventogenesis in Clostridium acetobutylicum in a chemostat culture. Appl Microbiol Biotechnol 87:2209–2226. doi: 10.1007/s00253-010-2741-x PubMedCrossRefPubMedCentralGoogle Scholar
  27. Janssen H, Grimmler C, Ehrenreich A, Bahl H, Fischer RJ (2012) A transcriptional study of acidogenic chemostat cells of Clostridium acetobutylicum—solvent stress caused by a transient n-butanol pulse. J Biotechnol 161:354–365. doi: 10.1016/j.jbiotec.2012.03.027 PubMedCrossRefGoogle Scholar
  28. Jones D, Woods D (1986) Acetone-butanol fermentation revisited. Microbiol Rev 50:484–524PubMedPubMedCentralGoogle Scholar
  29. Jones S, Paredes C, Tracy B, Cheng N, Sillers R, Senger R, Papoutsakis E (2008) The transcriptional program underlying the physiology of clostridial sporulation. Genome Biol 9:R114. doi: 10.1186/gb-2008-9-7-r114 PubMedCrossRefPubMedCentralGoogle Scholar
  30. Junelles A, Janati-Idrissi R, Petitdemange H, Gay R (1988) Iron effect on acetone-butanol fermentation. Curr Microbiol 17:299–303. doi: 10.1007/BF01571332 CrossRefGoogle Scholar
  31. Karp P, Paley S, Krummenacker M, Latendresse M, Dale J, Lee T, Kaipa P, Gilham F, Spaulding A, Popescu L, Altman T, Paulsen I, Keseler I, Caspi R (2010) Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology. Brief Bioinform 11:40–79. doi: 10.1093/bib/bbp043 PubMedCrossRefPubMedCentralGoogle Scholar
  32. Keene J (2010) The global dynamics of RNA stability orchestrates responses to cellular activation. BMC Biol 8:95. doi: 10.1186/1741-7007-8-95 PubMedCrossRefPubMedCentralGoogle Scholar
  33. Kuehne S, Minton N (2012) ClosTron-mediated engineering of Clostridium. Bioengineered 3:247–254. doi: 10.4161/bioe.21004
  34. Kuehne S, Heap J, Cooksley C, Cartman S, Minton N (2011) ClosTron-mediated engineering of Clostridium. Methods Mol Biol 765:389–407. doi: 10.4161/bioe.21004 PubMedCrossRefGoogle Scholar
  35. Kumar M, Saini S, Gayen K (2014) Elementary mode analysis reveals that Clostridium acetobutylicum modulates its metabolic strategy under external stress. Mol BioSyst 10:2090–2105. doi: 10.1039/c4mb00126e PubMedCrossRefGoogle Scholar
  36. Lehmann D, Lütke-Eversloh T (2011) Switching Clostridium acetobutylicum to an ethanol producer by disruption of the butyrate/butanol fermentative pathway. Metab Eng 13:464–473. doi: 10.1016/j.ymben.2011.04.006 PubMedCrossRefGoogle Scholar
  37. Lehmann D, Hönicke D, Ehrenreich A, Schmidt M, Weuster-Botz D, Bahl H, Lütke-Eversloh T (2012a) Modifying the product pattern of Clostridium acetobutylicum. Appl Microbiol Biotechnol 93:1–12. doi: 10.1007/s00253-011-3852-8 CrossRefGoogle Scholar
  38. Lehmann D, Radomski N, Lütke-Eversloh T (2012b) New insights into the butyric acid metabolism of Clostridium acetobutylicum. Appl Microbiol Biotechnol 96:1325–1339. doi: 10.1007/s00253-012-4109-x PubMedCrossRefGoogle Scholar
  39. Lütke-Eversloh T, Bahl H (2011) Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. Curr Opin Biotechnol 22:634–647. doi: 10.1016/j.copbio.2011.01.011 PubMedCrossRefGoogle Scholar
  40. Lütke-Eversloh T (2014) Application of new metabolic engineering tools for C. acetobutylicum. Appl Microbiol Biotechnol 98:5823–5837. doi: 10.1007/s00253-014-5785-5 PubMedCrossRefGoogle Scholar
  41. Madigan M, Martinko J, Dunlap P, Clark D, Brock T (2009) Brock Biology of Microorganisms, 12th edn. Pearson/Benjamin Cummings, San FransiscoGoogle Scholar
  42. Mao S, Luo Y, Zhang T, Li J, Bao G, Zhu Y, Chen Z, Zhang Y, Li Y, Ma Y (2010) Proteome reference map and comparative proteomic analysis between a wild type Clostridium acetobutylicum DSM 1731 and its mutant with enhanced butanol tolerance and butanol yield. J Proteome Res 9:3046–3061. doi: 10.1021/pr9012078 PubMedCrossRefGoogle Scholar
  43. McAnulty M, Yen J, Freedman B, Senger R (2012) Genome-scale modeling using flux ratio constraints to enable metabolic engineering of clostridial metabolism in silico. BMC Syst Biol 6:42. doi: 10.1186/1752-0509-6-42 PubMedCrossRefPubMedCentralGoogle Scholar
  44. Millat T, Janssen H, Bahl H, Fischer RJ, Wolkenhauer O (2013a) Integrative modelling of pH-dependent enzyme activity and transcriptomic regulation of the acetone-butanol-ethanol fermentation of Clostridium acetobutylicum in continuous culture. Microbial Biotechnol 6:526–539. doi: 10.1111/1751-7915.12033 CrossRefGoogle Scholar
  45. Millat T, Janssen H, Thorn G, King J, Bahl H, Fischer RJ, Wolkenhauer O (2013b) A shift in the dominant phenotype governs the pH-induced switch in Clostridium acetobutylicum. Appl Microbiol Biotechnol 97:6451–6466. doi: 10.1007/s00253-013-4860-7 PubMedCrossRefGoogle Scholar
  46. Milne C, Eddy J, Raju R, Ardekani S, Kim PJ, Senger R, Jin YS, Blaschek H, Price N (2011) Metabolic network reconstruction and genome-scale model of butanol-producing strain Clostridium beijerinckii NCIMB 8052. BMC Syst Biol 5:130. doi: 10.1186/1752-0509-5-130 PubMedCrossRefPubMedCentralGoogle Scholar
  47. Nölling J, Breton G, Omelchenko M, Makarova K, Zeng Q, Gibson R, Lee H, Dubois J, Qiu D, Hitti J, GSC Production, Teams B Finishing, Wolf Y, Tatusov R, Sabathe F, Doucette-Stamm L, Soucaille P, Daly M, Bennett G, Koonin E, Smith D (2001) Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol 183:4823–4838. doi: 10.1128/JB.183.16.4823-4838.2001 PubMedCrossRefPubMedCentralGoogle Scholar
  48. Papoutsakis E (1984) Equations and calculations for fermentations of butyric acid bacteria. Biotechnol Bioeng 26:174–187. doi: 10.1002/bit.260260210 PubMedCrossRefGoogle Scholar
  49. Petersen D, Welch R, Rudolph F, Bennett G (1991) Molecular cloning of an alcohol (butanol) dehydrogenase gene cluster from Clostridium acetobutylicum ATCC 824. J Bacteriol 173:1831–1834PubMedPubMedCentralGoogle Scholar
  50. Rogers P, Gottschalk G (1993) Biochemistry and regulation of acid and solvent formation in clostridia. In: Woods DR (ed) The clostridia and biotechnology. Butterworth-Heinemann, London, pp 25–50Google Scholar
  51. Sauer U, Dürre P (1995) Differential induction of genes related to solvent formation during the shift from acidogenesis to solventogenesis in continuous culture of Clostridium acetobutylicum. FEMS Microbiol Lett 125:115–120. doi: 10.1111/j.1574-6968.1995.tb07344.x CrossRefGoogle Scholar
  52. Schaffer S, Isci N, Zickner B, Dürre P (2002) Changes in protein synthesis and identification of proteins specifically induced during solventogenesis in Clostridium acetobutylicum. Electrophoresis 23:110–121. doi: 10.1002/1522-2683(200201)23:1<110::AID-ELPS110>3.0.CO;2-G PubMedCrossRefGoogle Scholar
  53. Shinto H, Tashiro Y, Yamashita M, Kobayashi G, Sekiguchi T, Hanai T, Kuriya Y, Okamoto M, Sonomoto K (2007) Kinetic modeling and sensitivity analysis of acetone-butanol-ethanol production. J Biotechnol 131:45–56. doi: 10.1016/j.jbiotec.2007.05.005 PubMedCrossRefGoogle Scholar
  54. Straub L (2011) Beyond the transcripts: what controls protein variation? PLoS Biol 9:e1001146. doi: 10.1371/journal.pbio.1001146 PubMedCrossRefPubMedCentralGoogle Scholar
  55. Tummala S, Junne S, Papoutsakis E (2003a) Antisense RNA downregulation of coenzyme A transferase combined with alcohol-aldehyde dehydrogenase overexpression leads to predominantly alcohologenic Clostridium acetobutylicum fermentations. J Bacteriol 185:3644–3653. doi: 10.1128/JB.185.12.3644-3653.2003 PubMedCrossRefPubMedCentralGoogle Scholar
  56. Tummala S, Welker N, Papoutsakis E (2003b) Design of antisense RNA constructs for downregulation of the acetone formation pathway of Clostridium acetobutylicum. J Bacteriol 185:1923–1934. doi: 10.1128/JB.185.6.1923-1934.2003 PubMedCrossRefPubMedCentralGoogle Scholar
  57. Vasileva D, Janssen H, Hönicke D, Ehrenreich A, Bahl H (2012) Effect of iron limitation and fur gene inactivation on the transcriptional profile of the strict anaerobe Clostridium acetobutylicum. Microbiol 158:1918–1929. doi: 10.1099/mic.0.056978-0 CrossRefGoogle Scholar
  58. Walter K, Bennett G, Papoutsakis E (1992) Molecular characterization of two Clostridium acetobutylicum ATCC 824 butanol dehydrogenase isozyme genes. J Bacteriol 174:7149–7158PubMedPubMedCentralGoogle Scholar
  59. Welch R, Rudolph F, Papoutsakis E (1989) Purification and characterization of the NADH-dependent butanol dehydrogenase from Clostridium acetobutylicum (ATCC 824). Arch Biochem Biophys 273:309–318PubMedCrossRefGoogle Scholar
  60. Wiesenborn D, Rudolph F, Papoutsakis E (1989a) Coenzyme A transferase from Clostridium acetobutylicum ATCC 824 and its role in the uptake of acids. Appl Environ Microbiol 55:323–329PubMedPubMedCentralGoogle Scholar
  61. Wiesenborn D, Rudolph F, Papoutsakis E (1989b) Phosphotransbutyrylase from Clostridium acetobutylicum ATCC 824 and its role in acidogenesis. Appl Environ Microbiol 55:317–322PubMedPubMedCentralGoogle Scholar
  62. Wietzke M, Bahl H (2012) The redox-sensing protein Rex, a transcriptional regulator of solventogenesis in Clostridium acetobutylicum. Appl Microbiol Biotechnol 96:749–761. doi: 10.1007/s00253-012-4112-2 PubMedCrossRefGoogle Scholar
  63. Zhang Y, Hou T, Li B, Liu C, Mu X, Wang H (2014) Acetone-butanol-ethanol production from corn stover pretreated by alkaline twin-screw extrusion pretreatment. Bioprocess Biosyst Eng 37:913–921. doi: 10.1007/s00449-013-1063-7 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Thomas Millat
    • 1
    • 3
  • Christine Voigt
    • 2
  • Holger Janssen
    • 2
  • Clare M. Cooksley
    • 3
  • Klaus Winzer
    • 3
  • Nigel P. Minton
    • 3
  • Hubert Bahl
    • 2
  • Ralf-Jörg Fischer
    • 2
  • Olaf Wolkenhauer
    • 1
    • 4
  1. 1.Institute of Computer Science, Department of Systems Biology & BioinformaticsUniversity of RostockRostockGermany
  2. 2.Institute of Biological Sciences, Division of MicrobiologyUniversity of RostockRostockGermany
  3. 3.Clostridia Research Group, BBRSC Sustainable Bioenergy Centre, School of Life SciencesUniversity of NottinghamNottinghamUK
  4. 4.Institute for Advanced Study (STIAS)Wallenberg Research Centre at Stellenbosch UniversityStellenboschSouth Africa

Personalised recommendations