Applied Microbiology and Biotechnology

, Volume 99, Issue 3, pp 1237–1247 | Cite as

Directed arginine deiminase evolution for efficient inhibition of arginine-auxotrophic melanomas

Biotechnologically relevant enzymes and proteins


Arginine deiminase (ADI) is a therapeutic protein for cancer therapy of arginine-auxotrophic tumors. However, ADI’s application as anticancer drug is hampered by its low activity for arginine under physiological conditions mainly due to its high “KM” (S0.5) values which are often 1 magnitude higher than the arginine concentration in blood (0.10–0.12 mM arginine in human plasma). Previous evolution campaigns were directed by us with the aim of boosting activity of PpADI (ADI from Pseudomonas plecoglossicida, kcat = 0.18 s−1; S0.5 = 1.30 mM), and yielded variant M6 with slightly reduced S0.5 values and enhanced kcat (S0.5 = 0.81 mM; kcat = 11.64 s−1). In order to further reduce the S0.5 value and to increase the activity of PpADI at physiological arginine concentration, a more sensitive screening system based on ammonia detection in 96-well microtiter plate to reliably detect ≥0.005 mM ammonia was developed. After screening ~5,500 clones with the ammonia detection system (ADS) in two rounds of random mutagenesis and site-directed mutagenesis, variant M19 with increased kcat value (21.1 s−1; 105.5-fold higher compared to WT) and reduced S0.5 value (0.35 mM compared to 0.81 mM (M6) and 1.30 mM (WT)) was identified. Improved performance of M19 was validated by determining IC50 values for two melanoma cell lines. The IC50 value for SK-MEL-28 dropped from 8.67 (WT) to 0.10 (M6) to 0.04 μg/mL (M19); the IC50 values for G361 dropped from 4.85 (WT) to 0.12 (M6) to 0.05 μg/mL (M19).


Directed evolution Arginine-auxotrophic melanoma Arginine deiminase Lower KM value Antiproliferation activity 

Supplementary material

253_2014_5985_MOESM1_ESM.pdf (689 kb)
ESM 1(PDF 689 kb)


  1. Archibald RM (1944) Determination of citrulline and allantoin and demonstration of citrulline in blood plasma. J Biol Chem 156:121–142Google Scholar
  2. Blanusa M, Schenk A, Sadeghi H, Marienhagen J, Schwaneberg U (2010) Phosphorothioate-based ligase-independent gene cloning (PLICing): an enzyme-free and sequence-independent cloning method. Anal Biochem 406:141–146PubMedCrossRefGoogle Scholar
  3. Cheng PNM, Lam TL, Lam WM, Tsui SM, Cheng AWM, Lo WH, Leung, YC (2007) Pegylated recombinant human arginase (rhArg-peg(5,000mw)) inhibits the in vitro and in vivo proliferation of human hepatocellular carcinoma through arginine depletion. Cancer Res 67:309–317Google Scholar
  4. Das K, Butler GH, Kwiatkowski V, Clark AD Jr, Yadav P, Arnold E (2004) Crystal structures of arginine deiminase with covalent reaction intermediates; implications for catalytic mechanism. Structure 12:657–667PubMedCrossRefGoogle Scholar
  5. Despotovic D, Vojcic L, Prodanovic R, Martinez R, Maurer KH, Schwaneberg U (2012) Fluorescent assay for directed evolution of perhydrolases. J Biomol Screen 17:796–805PubMedCrossRefGoogle Scholar
  6. Ensor CM, Holtsberg FW, Bomalaski JS, Clark MA (2002) Pegylated arginine deiminase (ADI-SS PEG20,000 mw) inhibits human melanomas and hepatocellular carcinomas in vitro and in vivo. Cancer Res 62:5443–5450PubMedGoogle Scholar
  7. Galkin A, Kulakova L, Sarikaya E, Lim K, Howard A, Herzberg O (2004) Structural insight into arginine degradation by arginine deiminase, an antibacterial and parasite drug target. J Biol Chem 279:14001–14008PubMedCrossRefGoogle Scholar
  8. Galkin A, Lu XF, Dunaway-Mariano D, Herzberg O (2005) Crystal structures representing the Michaelis complex and the thiouronium reaction intermediate of Pseudomonas aeruginosa arginine deiminase. J Biol Chem 280:34080–34087PubMedCrossRefGoogle Scholar
  9. Gallego P, Planell R, Benach J, Querol E, Perez-Pons JA, Reverter D (2012) Structural characterization of the enzymes composing the arginine deiminase pathway in Mycoplasma penetrans. PLoS One 7:e47886PubMedCentralPubMedCrossRefGoogle Scholar
  10. Gesztelyi R, Zsuga J, Kemeny-Beke A, Varga B, Juhasz B, Tosaki A (2012) The Hill equation and the origin of quantitative pharmacology. Arch Hist Exact Sci 66:427–438CrossRefGoogle Scholar
  11. Glazer ES, Piccirillo M, Albino V, Di Giacomo R, Palaia R, Mastro AA, Beneduce G, Castello G, De Rosa V, Petrillo A, Ascierto PA, Curley SA, Izzo F (2010) Phase II study of pegylated arginine deiminase for nonresectable and metastatic hepatocellular carcinoma. J Clin Oncol 28:2220–2226PubMedCrossRefGoogle Scholar
  12. Gong H, Zolzer F, von Recklinghausen G, Rossler J, Breit S, Havers W, Fotsis T, Schweigerer L (1999) Arginine deiminase inhibits cell proliferation by arresting cell cycle and inducing apoptosis. Biochem Biophys Res Commun 261:10–14PubMedCrossRefGoogle Scholar
  13. Gong H, Zolzer F, von Recklinghausen G, Havers W, Schweigerer L (2000) Arginine deiminase inhibits proliferation of human leukemia cells more potently than asparaginase by inducing cell cycle arrest and apoptosis. Leukemia 14:826–829PubMedCrossRefGoogle Scholar
  14. Hudson RC, Daniel RM (1993) L-glutamate dehydrogenases: distribution, properties and mechanism. Comp Biochem Physiol B 106:767–792PubMedGoogle Scholar
  15. Kelly MP, Jungbluth AA, Wu BW, Bomalaski J, Old LJ, Ritter G (2012) Arginine deiminase PEG20 inhibits growth of small cell lung cancers lacking expression of argininosuccinate synthetase. Br J Cancer 106:324–332PubMedCentralPubMedCrossRefGoogle Scholar
  16. Kim JE, Jeong DW, Lee HJ (2007) Expression, purification, and characterization of arginine deiminase from Lactococcus lactis ssp. lactis ATCC 7962 in Escherichia coli BL21. Protein Expres Purif 53:9–15CrossRefGoogle Scholar
  17. Kim RH, Coates JM, Bowles TL, McNerney GP, Sutcliffe J, Jung JU, Gandour-Edwards R, Chuang FYS, Bold RJ, Kung HJ (2009) Arginine deiminase as a novel therapy for prostate cancer induces autophagy and caspase-independent apoptosis. Cancer Res 69:700–708PubMedCentralPubMedCrossRefGoogle Scholar
  18. Martinez R, Jakob F, Tu R, Siegert P, Maurer KH, Schwaneberg U (2013) Increasing activity and thermal resistance of Bacillus gibsonii alkaline protease (BgAP) by directed evolution. Biotechnol Bioeng 110:711–720PubMedCrossRefGoogle Scholar
  19. Miyazaki K, Takenouchi M (2002) Creating random mutagenesis libraries using megaprimer PCR of whole plasmid. Biotechniques 33:1033–1038PubMedGoogle Scholar
  20. Mundhada H, Marienhagen J, Scacioc A, Schenk A, Roccatano D, Schwaneberg U (2011) SeSaM-Tv-II generates a protein sequence space that is unobtainable by epPCR. Chembiochem 12:1595–1601PubMedCrossRefGoogle Scholar
  21. Ni Y, Schwaneberg U, Sun ZH (2008) Arginine deiminase, a potential anti-tumor drug. Cancer Lett 261:1–11PubMedCrossRefGoogle Scholar
  22. Ott PA, Carvajal RD, Pandit-Taskar N, Jungbluth AA, Hoffman EW, Wu BW, Bomalaski JS, Venhaus R, Pan LD, Old LJ et al (2013) Phase I/II study of pegylated arginine deiminase (ADI-PEG 20) in patients with advanced melanoma. Invest New Drugs 31:425–434PubMedCentralPubMedCrossRefGoogle Scholar
  23. Ruff AJ, Dennig A, Schwaneberg U (2013) To get what we aim for-progress in diversity generation methods. FEBS J 280:2961–2978PubMedCrossRefGoogle Scholar
  24. Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L (2005) The FoldX web server: an online force field. Nucleic Acids Res 33:W382–388PubMedCentralPubMedCrossRefGoogle Scholar
  25. Shen LJ, Shen WC (2006) Drug evaluation: ADI-PEG-20—a PEGylated arginine deiminase for arginine-auxotrophic cancers. Curr Opin Mol Ther 8:240–248PubMedGoogle Scholar
  26. Studier FW (2005) Protein production by auto-induction in high-density shaking cultures. Protein Expr Purif 41:207–234PubMedCrossRefGoogle Scholar
  27. Syed N, Langer J, Janczar K, Singh P, Lo Nigro C, Lattanzio L, Coley HM, Hatzimichael E, Bomalaski J, Szlosarek P et al (2013) Epigenetic status of argininosuccinate synthetase and argininosuccinate lyase modulates autophagy and cell death in glioblastoma. Cell Death Dis 4:e458PubMedCentralPubMedCrossRefGoogle Scholar
  28. Weickmann JL, Fahrney DE (1977) Arginine deiminase from MycoplasmaArthritidis. Evidence for multiple forms. J Biol Chem 252:2615–2620PubMedGoogle Scholar
  29. Zhu L, Tee KL, Roccatano D, Sonmez B, Ni Y, Sun ZH, Schwaneberg U (2010a) Directed evolution of an antitumor drug (arginine deiminase PpADI) for increased activity at physiological pH. Chembiochem 11:691–697PubMedCrossRefGoogle Scholar
  30. Zhu L, Verma R, Roccatano D, Ni Y, Sun ZH, Schwaneberg U (2010b) A potential antitumor drug (arginine deiminase) reengineered for efficient operation under physiological conditions. Chembiochem 11:2294–2301PubMedCrossRefGoogle Scholar
  31. Zuniga M, Perez G, Gonzalez-Candelas F (2002) Evolution of arginine deiminase (ADI) pathway genes. Mol Phylogenet Evol 25:429–444PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Lehrstuhl für BiotechnologieRWTH Aachen UniversityAachenGermany
  2. 2.Institute of Biochemistry and Molecular Cell Biology, University Hospital AachenRWTH Aachen UniversityAachenGermany
  3. 3.DWI an der RWTH Aachen e.V.AachenGermany

Personalised recommendations