Advertisement

Applied Microbiology and Biotechnology

, Volume 99, Issue 3, pp 1229–1236 | Cite as

Immobilised whole-cell recombinant monoamine oxidase biocatalysis

  • Petra Zajkoska
  • Michal Rosenberg
  • Rachel Heath
  • Kirk J. Malone
  • Radek Stloukal
  • Nicholas J. Turner
  • Martin RebrošEmail author
Biotechnologically relevant enzymes and proteins

Abstract

This work demonstrates the first example of the immobilisation of MAO-N whole cells to produce a biocatalyst that remained suitable for repetitive use after 11 months of storage and stable up to 15 months after immobilisation. The production of Escherichia coli expressing recombinant MAO-N was scaled up to bioreactors under regulated, previously optimised conditions (10 % DO, pH 7), and the amount of biomass was almost doubled compared to flask cultivation. Subsequently, pilot immobilisation of the whole-cell biocatalyst using LentiKats® technology was performed. The amount of the immobilised biomass was optimised and the process was scaled up to a production level by immobilising 15 g of dry cell weight per litre of polyvinyl alcohol to produce 3 kg of whole-cell ready-to-use biocatalyst. The immobilised biocatalyst retained its initial activity over six consecutive biotransformations of the secondary amine model compound 3-azabicylo [3,3,0]octane, a building block of the hepatitis C drug telaprevir. Consecutive cultivation cycles in growth conditions not only increased the initial specific activity of biocatalyst produced on the industrial plant by more than 30 %, but also significantly increased the rate of the biotransformation compared to the non-propagated biocatalyst.

Keywords

Immobilisation E. coli MAO-N Biotransformation Amine 

Notes

Acknowledgments

The research leading to these results has received funding from the European Union Seventh Framework Programme BIONEXGEN under grant agreement no. 266025. This work was co-funded by the Slovak Research and Development Agency under contract no. DO7RP-0042-11.

Supplementary material

253_2014_5983_MOESM1_ESM.pdf (189 kb)
ESM 1 (PDF 189 kb)

References

  1. Alexeeva M, Enright A, Dawson MJ, Mahmoudian M, Turner NJ (2002) Deracemization of α-methylbenzylamine using an enzyme obtained by in vitro evolution. Angew Chem Int Ed Engl 41:3177–3180. doi: 10.1002/1521-3773(20020902)41:17<3177::aid-anie3177>3.0.co;2-p PubMedCrossRefGoogle Scholar
  2. Atkin KE, Reiss R, Turner NJ, Brzozowski AM, Grogan G (2008) Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of variants of monoamine oxidase from Aspergillus niger. Acta Crystallogr F 64:182–185. doi: 10.1107/S174430910800345X CrossRefGoogle Scholar
  3. Bach TMH, Takagi H (2013) Properties, metabolisms, and applications of l-proline analogues. Appl Microbiol Biotechnol 97:6623–6634PubMedCrossRefGoogle Scholar
  4. Boušková A, Mrákota J, Stloukal R, Trögl J, Pilařová V, Křiklavová L, Lederer T (2011) Three examples of nitrogen removal from industrial wastewater using Lentikats Biotechnology. Desalination 280:191–196CrossRefGoogle Scholar
  5. Cardenas-Fernandez M, Neto W, Lopez C, Alvaro G, Tufvesson P, Woodley JM (2012) Immobilization of Escherichia coli containing ω-transaminase activity in LentiKats®. Biotechnol Prog 28:693–698. doi: 10.1002/btpr.1538 PubMedCrossRefGoogle Scholar
  6. Carr R, Alexeeva M, Dawson MJ, Gotor-Fernandez V, Humphrey CE, Turner NJ (2005) Directed evolution of an amine oxidase for the preparative deracemisation of cyclic secondary amines. Chembiochem 6:637–639. doi: 10.1002/cbic.200400329 PubMedCrossRefGoogle Scholar
  7. do Nascimento TG, Oliveira ED, Basilio ID, de Araujo JX, Macedo RO (2013) Short-term stability studies of ampicillin and cephalexin in aqueous solution and human plasma: application of least squares method in Arrhenius equation. J Pharm Biomed Anal 73:59–64PubMedCrossRefGoogle Scholar
  8. Dunsmore CJ, Carr R, Fleming T, Turner NJ (2006) A chemo-enzymatic route to enantiomerically pure cyclic tertiary amines. J Am Chem Soc 128:2224–2225. doi: 10.1021/ja058536d PubMedCrossRefGoogle Scholar
  9. Durieux A, Nicolay X, Simon JP (2000) Continuous malolactic fermentation by Oenococcus oeni entrapped in LentiKats. Biotechnol Lett 22:1679–1684. doi: 10.1023/a:1005667611732 CrossRefGoogle Scholar
  10. Foulkes JM, Malone KJ, Coker VS, Turner NJ, Lloyd JR (2011) Engineering a biometallic whole cell catalyst for enantioselective deracemization reactions. ACS Catal 1:1589–1594CrossRefGoogle Scholar
  11. Ghislieri D, Green AP, Pontini M, Willies SC, Rowles I, Frank A, Grogan G, Turner NJ (2013) Engineering an enantioselective amine oxidase for the synthesis of pharmaceutical building blocks and alkaloid natural products. J Am Chem Soc 135:10863–10869PubMedCrossRefGoogle Scholar
  12. Grosová Z, Rosenberg M, Gdovin M, Sláviková L, Rebroš M (2009) Production of D-galactose using β-galactosidase and Saccharomyces cerevisiae entrapped in poly(vinylalcohol) hydrogel. Food Chem 116:96–100CrossRefGoogle Scholar
  13. Koehler V, Bailey KR, Znabet A, Raftery J, Helliwell M, Turner NJ (2010) Enantioselective biocatalytic oxidative desymmetrization of substituted pyrrolidines. Angew Chem Int Ed Engl 49:2182–2184. doi: 10.1002/anie.200906655 CrossRefGoogle Scholar
  14. Kubáč D, Čejková A, Masák J, Jirků V, Lemaire M, Gallienne E, Bolte J, Stloukal R, Martínková L (2006) Biotransformation of nitriles by Rhodococcus equi A4 immobilized in LentiKats®. J Mol Catal B Enzym 39:59–61. doi: 10.1016/j.molcatb.2006.01.004 CrossRefGoogle Scholar
  15. Li T, Liang J, Ambrogelly A, Brennan T, Gloor G, Huisman G, Lalonde J, Lekhal A, Mijts B, Muley S, Newman L, Tobin M, Wong G, Zaks A, Zhang XY (2012) Efficient, chemoenzymatic process for manufacture of the boceprevir bicyclic [3.1.0] proline intermediate based on amine oxidase-catalyzed desymmetrization. J Am Chem Soc 134:6467–6472PubMedCrossRefGoogle Scholar
  16. Ramesh H, Woodley JM (2014) Process characterization of a monoamine oxidase. J Mol Catal B Enzym 106:124–131. doi: 10.1016/j.molcatb.2014.04.009 CrossRefGoogle Scholar
  17. Rebroš M, Rosenberg M, Stloukal R, Krištofíková L (2005) High efficiency ethanol fermentation by entrapment of Zymomonas mobilis into LentiKats®. Lett Appl Microbiol 41:412–416. doi: 10.1111/j.1472-765X.2005.01770.x PubMedCrossRefGoogle Scholar
  18. Rebroš M, Rosenberg M, Grosová Z, Krištofíková Ľ, Paluch M, Šipöcz M (2009) Ethanol production from starch hydrolyzates using Zymomonas mobilis and glucoamylase entrapped in polyvinylalcohol hydrogel. Appl Biochem Biotechnol 158:561–570. doi: 10.1007/s12010-008-8475-x PubMedCrossRefGoogle Scholar
  19. Rebroš M, Lipták L, Rosenberg M, Bučko M, Gemeiner P (2014) Biocatalysis with Escherichia coli-overexpressing cyclopentanone monooxygenase immobilized in polyvinyl alcohol gel. Lett Appl Microbiol 58:556–563. doi: 10.1111/lam.12227 PubMedCrossRefGoogle Scholar
  20. Rodriguez-Nogales JM, Vila-Crespo J, Fernandez-Fernandez E (2013) Immobilization of Oenococcus oeni in Lentikats® to develop malolactic fermentation in wines. Biotechnol Prog 29:60–65PubMedCrossRefGoogle Scholar
  21. Stloukal R, Rosenberg M, Rebros M (2007) A method for industrial production of biocatalysts in the form of enzymes or microorganisms immobilized in polyvinyl alcohol gel, their use and devices for their production WO/2007/104268Google Scholar
  22. Turner NJ (2011) Enantioselective oxidation of C–O and C–N bonds using oxidases. Chem Rev 111:4073–4087. doi: 10.1021/cr200111v PubMedCrossRefGoogle Scholar
  23. Voulgaris I, Arnold SA, Speight R, Harvey LM, McNeil B (2011) Effects of dissolved oxygen availability and culture biomass at induction upon the intracellular expression of monoamine oxidase by recombinant E. coli in fed batch bioprocesses. Process Biochem 46:721–729. doi: 10.1016/j.procbio.2010.11.019 CrossRefGoogle Scholar
  24. www.lentikats.eu; Accessed 22.5. 2014
  25. Zajkoska P, Rebroš M, Rosenberg M (2013) Biocatalysis with immobilized Escherichia coli. Appl Microbiol Biotechnol 97:1441–1455PubMedCrossRefGoogle Scholar
  26. Znabet A, Ruijter E, de Kanter FJJ, Koehler V, Helliwell M, Turner NJ, Orru RVA (2010) Highly stereoselective synthesis of substituted prolyl peptides using a combination of biocatalytic desymmetrization and multicomponent reactions. Angew Chem Int Ed 49:5289–5292CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Petra Zajkoska
    • 1
  • Michal Rosenberg
    • 1
  • Rachel Heath
    • 2
  • Kirk J. Malone
    • 2
  • Radek Stloukal
    • 3
  • Nicholas J. Turner
    • 2
  • Martin Rebroš
    • 1
    Email author
  1. 1.Institute of Biotechnology and Food Science, Faculty of Chemical and Food TechnologySlovak University of TechnologyBratislavaSlovakia
  2. 2.School of Chemistry, Manchester Institute of BiotechnologyUniversity of ManchesterManchesterUK
  3. 3.LentiKats a.sPrague 6Czech Republic

Personalised recommendations