Applied Microbiology and Biotechnology

, Volume 98, Issue 19, pp 8083–8097 | Cite as

Biogenic synthesis of metal nanoparticles from actinomycetes: biomedical applications and cytotoxicity

  • Patrycja Golinska
  • Magdalena Wypij
  • Avinash P. Ingle
  • Indarchand Gupta
  • Hanna Dahm
  • Mahendra RaiEmail author


Biogenic synthesis of metal nanoparticles has been well proved by using bacteria, fungi, algae, actinomycetes, plants, etc. Among the different microorganisms used for the synthesis of metal nanoparticles, actinomycetes are less known. Although, there are reports, which have shown that actinomycetes are efficient candidates for the production of metal nanoparticles both intracellularly and extracellularly. The nanoparticles synthesized by the members of actinomycetes present good polydispersity and stability and possess significant biocidal activities against various pathogens. The present review focuses on biological synthesis of metal nanoparticles and their application in medicine. In addition, the toxicity of these biogenic metal nanoparticles to human beings and environment has also been discussed.


Metal nanoparticles Actinomycetes Biogenic synthesis Bioactivity of metal nanoparticles Cytotoxicity 



Support from The National Science Centre (NCN)—“Grant Symphony 1” No. 2013/08/W/NZ8/00701 and from the project of “Enhancing Educational Potential of Nicolaus Copernicus University in the Disciplines of Mathematical and Natural Sciences—visiting professors” conducted under Sub-measure 4.1.1 Human Capital Operational Programme—Task 7 (Project No. POKL.04.01.01-00-081/10) are acknowledged.


  1. Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003a) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B: Biointerfaces 27:313–318Google Scholar
  2. Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, Sastry M (2003b) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete Thermomonospora sp. Langmuir 19:3550–3553Google Scholar
  3. Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, Sastry M (2003c) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14:824Google Scholar
  4. Alani F, Moo-Young M, Anderson W (2012) Biosynthesis of silver nanoparticles by a new strain of Streptomyces sp. compared with Aspergillus fumigatus. World J Microbiol Biotechnol 28(3):1081–1086Google Scholar
  5. Asanithi P, Chaiyakun S, Limsuwan P (2012) Growth of silver nanoparticles by DC magnetron sputtering. J Nanomater 2012, Article ID 963609 (8 pages)Google Scholar
  6. AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2):279–290PubMedGoogle Scholar
  7. Azizi S, Namvar F, Mahdavi M, Ahmad MB, Mohamad R (2013) Biosynthesis of silver nanoparticles using brown marine macroalga, Sargassum muticum aqueous extract. Mater 6:5942–5950Google Scholar
  8. Babadi VY, Najafi L, Najafi A, Gholami H, Zarji MEB, Golzadeh J, Amraie E, Shirband A (2012) Evaluation of iron oxide nanoparticles effects on tissue and enzymes of liver in rats. J Pharm Biomed Sci 23(23):1–4Google Scholar
  9. Baker C, Pradhan A, Pakstis L, Pochan DJ, Shah SI (2005) Synthesis and antibacterial properties of silver nanoparticles. J Nanosci Nanotechnol 2:244–249Google Scholar
  10. Balagurunathan R, Radhakrishnan M, Rajendran RB, Velmurugan D (2011) Biosynthesis of gold nanoparticles by actinomycete Streptomyces viridogens strain HM10. J Biochem Biophys 48:331–335Google Scholar
  11. Bar H, Bhudi DK, Sahoo GP, Sarkar P, De SP, Misra A (2009) Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids Surf A Physicochem Eng Asp 339:134–139Google Scholar
  12. Barreto GP, Morales G, Quintanilla MLL (2013) Microwave assisted synthesis of ZnO nanoparticles: effect of precursor reagents, temperature, irradiation time, and additives on nano-ZnO morphology development. J Mater 2013, Article ID 478681 (11 pages)Google Scholar
  13. Bawaskar M, Gaikwad S, Ingle A, Rathod D, Gade A, Duran N, Marcato P, Rai M (2010) A new report on mycosynthesis of silver nanoparticles by Fusarium culmorum. Curr Nanosci 6(4):376–380Google Scholar
  14. Bhainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B: Biointerfaces 47:160–164PubMedGoogle Scholar
  15. Brayner R, Barberousse H, Hemadi M, Djedjat C, Yéprémian C, Coradin T, Livage J, Fiévet F, Couté A (2007) Cyanobacteria as bioreactors for the synthesis of Au, Ag, Pd, and Pt nanoparticles via an enzyme-mediated route. J Nanosci Nanotechnol 7(8):2696–2708PubMedGoogle Scholar
  16. Card JW, Zeldin DC, Bonner JC, Nestmann ER (2008) Pulmonary applications and toxicity of engineered nanoparticles. Am J Physiol Lung Cell Mol Physiol 295:L400–L411PubMedPubMedCentralGoogle Scholar
  17. Chauhun R, Kumar A, Abraham J (2013) A biological approach to the synthesis of silver nanoparticles with Streptomyces sp JAR1 and its antimicrobial activity. Sci Pharm 81:607–621Google Scholar
  18. Chen X, Schluesener HJ (2008) Nano-silver: a nanoproduct in medical application. Toxicol Lett 176:1–12PubMedGoogle Scholar
  19. Choi OK, Hu ZQ (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42:4583–4588PubMedGoogle Scholar
  20. Correa-Llanten DN, Muñoz-Ibacache SA, Castro ME, Muñoz PA, Blamey JM (2013) Gold nanoparticles synthesized by Geobacillus sp. strain ID17 a thermophilic bacterium isolated from Deception Island, Antarctica. Microb Cell Factories 12:75Google Scholar
  21. Dar M, Ingle A, Rai M (2013) Enhanced antimicrobial activity of silver nanoparticles synthesized by Cryphonectria sp. evaluated singly and in combination with antibiotics. Nanomedicine 9:105–110PubMedGoogle Scholar
  22. Dar MI, Chandiran AK, Gratzel M, Nazeeruddin BK, Shivashankar SA (2014) Controlled synthesis of TiO2 nanoparticles and nanospheres using a microwave assisted approach for their application in dye-sensitized solar cells. J Mater Chem 2:1662–1667Google Scholar
  23. Darroudi M, Ahmad MB, Abdullah AH, Ibrahim NA (2011) Green synthesis and characterization of gelatin-based and sugar-reduced silver nanoparticles. Int J Nanomedicine 6:569–574PubMedPubMedCentralGoogle Scholar
  24. Das VL, Thomas R, Varghese RT, Soniya EV, Mathew J, Radhakrishnan EK (2014) Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. 3. Biotech 4:121–126Google Scholar
  25. Deepa S, Kanimozhi K, Panneerselvam A (2013) Antimicrobial activity of extracellularly synthesized silver nanoparticles from marine derived actinomycetes. Int J Curr Microbiol Appl Sci 2(9):223–230Google Scholar
  26. Dos Santos CA, Seckler MM, Ingle AP, Gupta I, Galdiero S, Galdiero M, Gade A, Rai M (2014) Silver nanoparticles: therapeutical uses, toxicity, and safety issues. J Pharmacol Sci 103(7):1931–1944Google Scholar
  27. Duffin R, Tran L, Brown D, Stone V, Donaldson K (2007) Proinflammogenic effects of low-toxicity and metal nanoparticles in vivo and in vitro: highlighting the role of particle surface area and surface reactivity. Inhal Toxicol 19:849–856PubMedGoogle Scholar
  28. Durán N, Marcato PD, Alves OL, De Souza GIH, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:8Google Scholar
  29. El-Rafie HM, El-Rafie MH, Zahran MK (2013) Green synthesis of silver nanoparticles using polysaccharides extracted from marine macro algae. Carbohydr Polym 96(2):403–410PubMedGoogle Scholar
  30. El-Sheikh MA, El-Rafie SM, Abdel-Halim ES, El-Rafie MH (2013) Green synthesis of hydroxyethyl cellulose-stabilized silver nanoparticles. J Polymers 2013, 2013), Article ID 650837, (11 pages)Google Scholar
  31. Gade AK, Bonde P, Ingle AP, Marcato PD, Duran N, Rai MK (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mater Bioenerg 2:1–5Google Scholar
  32. Gade A, Gaikwad S, Duran N, Rai M (2013a) Green synthesis of silver nanoparticles by Phoma glomerata. Micron 59:52–59PubMedGoogle Scholar
  33. Gade A, Gaikwad S, Durán N, Rai M (2013b) Screening of different species of Phoma for synthesis of silver nanoparticles. Biotechnol Appl Biochem 60(5):482–493PubMedGoogle Scholar
  34. Gaikwad S, Birla S, Ingle A, Gade A, Marcato P, Rai M, Duran N (2013) Screening of different Fusarium species to select potential species for the synthesis of silver nanoparticles. J Braz Chem Soc 24(2):1974–1982Google Scholar
  35. Ghorbani HR (2013) Biosynthesis of silver nanoparticles using Salmonella typhirium. J Nanostruct Chem 3:29Google Scholar
  36. Gupta I, Duran N, Rai M (2012) Nano-silver toxicity: emerging concerns and consequences in human health. In: Rai M, Cioffi N (eds) Nano-antimicrobials: progress and prospects. Springer Verlag, Germany, pp 525–548Google Scholar
  37. Hanley C, Thurber A, Hanna C, Punnoose A, Zhang J, Winget DG (2009) The influences of cell type and ZnO nanoparticle size on immune cell cytotoxicity and cytokine induction. Nanoscale Res Lett 4(12):1409–1420PubMedPubMedCentralGoogle Scholar
  38. He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett 61:3984–3987Google Scholar
  39. Honary S, Gharaei-Fathabad E, Barabadi H, Naghibi F (2013) Fungus-mediated synthesis of gold nanoparticles: a novel biological approach to nanoparticle synthesis. J Nanosci Nanotechnol 13(2):1427–1430PubMedGoogle Scholar
  40. Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol in Vitro 19(7):975–983PubMedGoogle Scholar
  41. Iavicoli I, Leso V, Bergamaschi A (2012) Toxicological effects of titanium dioxide nanoparticles: a review of in vivo studies. J Nanomater 2012: Article ID 964381 (36 pages)Google Scholar
  42. Ingle AP, Gade AK, Pierrat S, Sönnichsen C, Rai MK (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144Google Scholar
  43. Ingle A, Rai M, Gade A, Bawaskar M (2009) Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J Nanoparticle Res 11(8):2079–2085Google Scholar
  44. Iravani S, Zolfaghari B (2013) Green synthesis of silver nanoparticles using Pinus eldarica bark extract. BioMed Res Int 2013, Article ID 639725, (5 pages)Google Scholar
  45. Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Resin Pharma Sci 9(6):385–406Google Scholar
  46. Isaac RSR, Sakthivel G, Murthy CH (2013) Green synthesis of gold and silver nanoparticles using Averrhoa bilimbi fruit extract. J Nanotechnol 2013, Article ID 906592 (6 pages)Google Scholar
  47. Kalabegishvili T, Kirkesali E, Ginturi E, Rcheulishvili A, Murusidze I, Pataraya D, Gurielidze M, Bagdavadze N, Kuchava N, Gvarjaladze D, Lomidze L (2013) Synthesis of gold nanoparticles by new strains of thermophilic actinomycetes. Nano Stud 7:255–260Google Scholar
  48. Kalimuthu K, Babu RS, Venkataraman D, Bilal M, Gurunathan S (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B: Biointerfaces 65:150–153PubMedGoogle Scholar
  49. Karlsson HL, Cronholm P, Gustafsson J, Möller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726–1732PubMedGoogle Scholar
  50. Karthik L, Kumar G, Vishnu Kirthi A, Rahuman AA, Bhaskara Rao KV (2014) Streptomyces sp. LK3 mediated synthesis of silver nanoparticles and its biomedical application. Bioprocess Biosyst Eng 37:261–267PubMedGoogle Scholar
  51. Khalil MMH, Ismail EH, El-Baghdady KZ, Mohamed D (2013) Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arab J Chem. doi: 10.1016/j.arabjc.2013.04.007 Google Scholar
  52. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med 3:95–101Google Scholar
  53. Kim J-H, Lee Y, Kim EJ, Gu S, Sohn EJ, Seo YS, An HJ, Chang YS (2014) Exposure of iron nanoparticles to Arabidopsis thaliana enhances root elongation by triggering cell wall loosening. Environ Sci Technol 48(6):3477–3485PubMedGoogle Scholar
  54. Kolekar TV, Yadav HM, Bandgar SS, Deshmukh PY (2011) Synthesis by sol–gel method and characterization of ZnO nanoparticles. Indian Streams Res J 1(1):1–4Google Scholar
  55. Kora AJ, Rastogi L (2013) Enhancement of antibacterial activity of capped silver nanoparticles in combination with antibiotics, on model gram-negative and gram-positive bacteria. Bioinorg Chem Appl 2013, Article ID 871097 (7 pages)Google Scholar
  56. Kumar A, Kaur K, Sharma S (2013) Synthesis, characterization and antibacterial potential of silver nanoparticles by Morus nigra leaf extract. Indian J Pharm Biol Res 1(4):16–24Google Scholar
  57. Manivasagan P, Venkatesan J, Senthilkumar K, Sivakumar K, Kim S (2013) Biosynthesis, antimicrobial and cytotoxic effect of silver nanoparticles using a novel Nocardiopsis sp. MBRC-1. Bio Med Res Int 2013 Article ID 287638 (9 pages)Google Scholar
  58. Metuku RP, Pabba S, Burra S, Hima BN, Gudikandula K, Charya MAS (2014) Biosynthesis of silver nanoparticles from Schizophyllum radiatum HE 863742.1: Their characterization and antimicrobial activity. 3. Biotech 4(3):227–234Google Scholar
  59. Midander K, Cronholm P, Karlsson HL, Elihn K, Möller L, Leygraf C, Wallinder IO (2009) Surface characteristics, copper release, and toxicity of nano- and micrometer-sized copper and copper(II) oxide particles: a cross-disciplinary study. Small 5:389–399PubMedGoogle Scholar
  60. Mittal S, Pandey AK (2014) Cerium oxide nanoparticles induced toxicity in human lung cells: role of ROS mediated DNA damage and apoptosis. BioMed Res Int 2014: Article ID 891934 (14 pages)Google Scholar
  61. Mohan YM, Lee K, Premkumar T, Geckeler KE (2007) Hydrogel networks as nanoreactors: a novel approach to silver nanoparticles for antibacterial applications. Polymer 48:158–164Google Scholar
  62. Morones JR, Elechiguerra JL, Camacho A, Ramirez JT (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353PubMedGoogle Scholar
  63. Mukherjee P, Roy M, Mandal BP, Dey GK, Mukherjee PK, Ghatak J, Tyagi AK, Kale SP (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology 19:1–7Google Scholar
  64. Nanda A, Saravanan M (2009) Biosynthesis of silver nanoparticles from S. aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine 5:452–456PubMedGoogle Scholar
  65. Narasimha G, Janardhan A, Alzohairy M, Khadri H, Mallikarjuna K (2013) Extracellular synthesis, characterization and antibacterial activity of silver nanoparticles by actinomycetes isolative. Int J Nano Dimens 4:77–83Google Scholar
  66. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627PubMedGoogle Scholar
  67. Oberdörster G (2010) Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med 267(1):89–105PubMedGoogle Scholar
  68. Orłowski P, Krzyżowska M, Winnicka A, Chwalibóg A, Sawosz E (2012) Toxicity of silver nanoparticles in monocytes and keratinocytes: potential to induce inflammatory reactions. Cent Eur J Immunol 37(2):123–130Google Scholar
  69. Otari SV, Patil RM, Nadaf NH, Ghosh SJ, Pawar SH (2012) Green biosynthesis of silver nanoparticles from an actinobacteria Rhodococcus sp. Mater Lett 72:92–94Google Scholar
  70. Oza G, Pandey S, Gupta A, Kesarkar R, Sharon M (2012) Biosynthetic reduction of gold ions to gold nanoparticles by Nocardia farcinica. J Microbiol Biotechnol Res 4:511–515Google Scholar
  71. Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 27:1712–1720Google Scholar
  72. Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, Sharma VK, Nevecna T (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem 110:16248–16253Google Scholar
  73. Pandey S, Oza G, Mewada A, Sharon M (2012) Green synthesis of highly stable gold nanoparticles using Momordica charantia as nano fabricator. Arch App Sci Res 4(2):1135–1141Google Scholar
  74. Papp S, Patakfalvi R, Dekany I (2007) Formation and stabilization of noble metal nanoparticles. Croat Chem Acta 80(3–4):493–502Google Scholar
  75. Parikh RY, Singh S, Prasad BLV, Patole MS, Sastry M, Shouche YS (2008) Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from Morganella sp.: towards understanding biochemical synthesis mechanism. Chem Biochem 9:34–41Google Scholar
  76. Pattekari P, Zheng Z, Zhang X, Levchenko T, Torchilinb V, Lvov Y (2011) Top-down and bottom-up approaches in production of aqueous nanocolloids of low solubility drug paclitaxel. Phys Chem Chem Phys 13:9014–9019PubMedGoogle Scholar
  77. Pavani KV, Kumar NS (2013) Adsorption of iron and synthesis of iron nanoparticles by Aspergillus species Kvp12. Am J Nanomater 1(2):24–26Google Scholar
  78. Phuoc TX (2014) Complete green synthesis of gold nanoparticles using laser ablation in deionized water containing chitosan and starch. J Mater Sci Nanotechnol 1:401Google Scholar
  79. Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2:32Google Scholar
  80. Prakasham RS, Buddana SK, Yannam SK, Guntuku GS (2012) Characterization of silver nanoparticles synthesized by using marine isolate Streptomyces albidoflavus. J Microbiol Biotechnol 22:614–621PubMedGoogle Scholar
  81. Prijaragini S, Sathishkumar SR, Bhaskararao KV (2013) Biosynthesis of silver nanoparticles using actinobacteria and evaluating its antimicrobial and cytotoxicity activity. Int J Pharm Pharm Sci 5:709–712Google Scholar
  82. Raheman F, Deshmukh S, Ingle A, Gade A, Rai M (2011) Silver nanoparticles: novel antimicrobial agent synthesized from a endophytic fungus Pestalotia sp. isolated from leaves of Syzygium cumini (L.). Nano Biomed Eng 3(3):174–178Google Scholar
  83. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83PubMedGoogle Scholar
  84. Rai M, Deshmukh SD, Ingle AP, Gade AK (2012) Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J Appl Microbiol 112:841–852PubMedGoogle Scholar
  85. Rai M, Ingle A, Gupta I, Gaikwad S, Gade A, Rubilar O, Duran N (2014) Cyto-, geno-, and ecotoxicity of copper nanoparticles. In: Durán N, Guterres SS, Alves OL (eds) Nanotoxicology: materials, methodologies and assessments. Springer Verlog, New York, pp 325–345Google Scholar
  86. Raimondi F, Scherer GG, Kotz R, Wokaun A (2005) Nanoparticles in energy technology: examples from electrochemistry and catalysis. Angew Chem Int Ed Engl 44:2190–2209PubMedGoogle Scholar
  87. Rajamanickam U, Mylsamy P, Viswanathan S, Muthusamy P (2012) Biosynthesis of zinc nanoparticles using actinomycetes for antibacterial food packaging. International Conference on Nutrition and Food Sciences IPCBEE vol 39 IACSITGoogle Scholar
  88. Rajasree SRR, Suman TY (2012) Extracellular biosynthesis of gold nanoparticles using a gram negative bacterium Pseudomonas fluorescens. Asian Pac J Trop Dis 2:S796–S799Google Scholar
  89. Rajeshkumar S, Malarkodi C, Gnanajobitha G, Paulkuma K, Vanaja M, Kannan C, Annadurai G (2013) Seaweed-mediated synthesis of gold nanoparticles using Turbinaria conoides and its characterization. J Nanostruct Chem 3:44Google Scholar
  90. Rajeshkumar S, Malarkodi C, Paulkuma K, Vanaja M, Gnanajobitha G, Kannan C, Annadurai G (2014) Algae mediated green fabrication of silver nanoparticles and examination of its antifungal activity against clinical pathogens. Int J Metals 2014: Article ID 692643, 8 pagesGoogle Scholar
  91. Ramesh S (2013) Sol–gel synthesis and characterization of nanoparticles. J Nanosci 2013: Article ID 929321 (8 pages)Google Scholar
  92. Ramesh P, Rajendran A, Meenakshisundaram M (2014) Green synthesis of zinc oxide nanoparticles using flower extract Cassia auriculata. J Nanosci Nanotechnol 1(1):41–45Google Scholar
  93. Raut RW, Haroon ASM, Malghe US, Nikam BT, Kashid SB (2013) Rapid biosynthesis of platinum and palladium metal nanoparticles using root extract of Asparagus racemosus Linn. Adv Mater Lett 4(8):650–654Google Scholar
  94. Reidy B, Haase A, Luch A, Dawson KA, Lynch I (2013) Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Mat 6:2295–2350Google Scholar
  95. Reza Ghorbani H, Akbar Safekordi A, Attar H, Rezayat Sorkhabadib SM (2011) Biological and non-biological methods for silver nanoparticles synthesis. Chem Biochem Eng Q 25:317–326Google Scholar
  96. Rosemary MJ, Pradeep T (2003) Solvothermal synthesis of silver nanoparticles from thiolates. J Colloid Interface Sci 268:81–84PubMedGoogle Scholar
  97. Sadhasivam S, Shanmugam P, Yun K (2010) Biosynthesis of silver nanoparticles by Streptomyces hygroscopicus and antimicrobial activity against medically important pathogenic microorganisms. Colloids Surf B: Biointerfaces 81:358–362PubMedGoogle Scholar
  98. Sadowski Z (2010) Biosynthesis and application of silver and gold nanoparticles, silver nanoparticles, David Pozo Perez (Ed.), ISBN: 978-953-307-028-5, InTech, Available from:
  99. Salata O (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2:1–6Google Scholar
  100. Sanghi R, Verma P (2009) Biomimetric synthesis and characterization of protein capped silver nanoparticles. Bioresour Technol 100:501–504PubMedGoogle Scholar
  101. Sanjenbam P, Gopal JV, Kannabiran K (2014) Anticandidal activity of silver nanoparticles synthesized using Streptomyces sp. VITPK1. J De Mycologie Médicale, Available from: 10.1016/j.mycmed.2014.03.004
  102. Sastry M, Ahmed A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycetes. Curr Nanosci 85(2):162–170Google Scholar
  103. Sathiyanarayanan G, Vignesh V, Saibaba G, Vinothkanna A, Dineshkumar K, Viswanathana MB, Selvin J (2014) Synthesis of carbohydrate polymer encrusted gold nanoparticles using bacterial exopolysaccharide: a novel and greener approach. RSC Adv 4:22817–22827Google Scholar
  104. Selvakumar P, Viveka S, Prakash S, Jasminebeaula S, Uloganathan R (2012) Antimicrobial activity of extracellularly synthesized silver nanoparticles from marine derived Streptomyces rochei. Int J Pharm Biol Sci 3:188–197Google Scholar
  105. Shah R, Oza G, Pandey S, Sharon M (2012) Biogenic fabrication of gold nanoparticles using Halomonas salina. J Microbiol Biotechnol Res 2(4):485–492Google Scholar
  106. Shahverdi AR, Minaian S, Shahverdi HR, Jamalifar H, Nohi AA (2007) Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem 42:919–923Google Scholar
  107. Shang L, Nienhaus K, Nienhaus GU (2014) Engineered nanoparticles interacting with cells: size matters. J Nanobiotechnol 12:5Google Scholar
  108. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interf Sci 145:83–96Google Scholar
  109. Sharma N, Pinnaka AK, Raje M, Ashish FNU, Bhattacharyya MS, Choudhury AR (2012) Exploitation of marine bacteria for production of gold nanoparticles. Microb Cell Factories 11:86Google Scholar
  110. Shelar GB, Chavan AM (2014) Fungus-mediated biosynthesis of silver nanoparticles and its antibacterial activity. Arch Appl Sci Res 6(2):111–114Google Scholar
  111. Shirley AD, Dayanand A, Sreedhar B, Dastager SG (2010) Antimicrobial activity of silver nanoparticles synthesized from novel Streptomyces species. Dig J Nanomater Biostruc 5:447–451Google Scholar
  112. Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D (2008) Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18:103–112Google Scholar
  113. Shukla RK, Kumar A, Gurbani D, Pandey AK, Singh S, Dhawan A (2013) TiO2 nanoparticles induce oxidative DNA damage and apoptosis in human liver cells. Nanotoxicol 7(1):48–60Google Scholar
  114. Silambarasan S, Jayanthi A (2013) Biosynthesis of silver nanoparticles using Pseudomonas fluorescens. Res J Biotechnol 8(3):71–75Google Scholar
  115. Singh RP, Ramarao P (2012) Cellular uptake, intracellular trafficking and cytotoxicity of silver nanoparticles. Toxicol Lett 213:249–259PubMedGoogle Scholar
  116. Sintubin L, De Windt W, Dick J, Mast J, van der Ha D, Verstraete W, Boon N (2009) Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl Microbiol Biotechnol 84:741–761PubMedGoogle Scholar
  117. Sivalingham P, Antony JJ, Siva D, Achiraman S, Anbarasu K (2012) Mangrove Streptomyces sp. BDUKAS10 as nanofactory for fabrication of bactericidal silver nanoparticles. Colloids Surf B: Biointerfaces 98:12–17Google Scholar
  118. Subashini J, Kannabiran K (2013) Antimicrobial activity of Streptomyces sp. VITBT7 and its synthesized silver nanoparticles against medically important fungal and bacterial pathogens. Der Pharm Lett 5:192–200Google Scholar
  119. Sukanya MK, Saju KA, Praseetha PK, Sakthivel G (2013) Potential of biologically reduced silver nanoparticles from Actinomycete cultures. J Nanosci 1-8Google Scholar
  120. Sundarmoorthi E, Devarasu S, Vengadesh Prabhu K (2011) Antimicrobial and wound healing activity of silver nanoparticles synthesized from Streptomyces aureofaciens. Int J Pharm Res Dev 12:69–75Google Scholar
  121. Sunitha A, Rimal IRS, Geo S, Sornalekshmi S, Rose A, Praseetha PK (2013) Evaluation of antimicrobial activity of biosynthesized iron and silver nanoparticles using the fungi Fusarium oxysporum and Actinomycetes sp. on human pathogens. Nano Biomed Eng 5: 39-45Google Scholar
  122. Sunitha A, Geo S, Sukanya S, Praseetha PK, Dhanya RP (2014) Biosynthesis of silver nanoparticles from actinomycetes for therapeutic applications. Int J Nano Dimens 5:155–162Google Scholar
  123. Thakker JN, Dalwadi P, Dhandhukia PC (2013) Biosynthesis of gold nanoparticles using Fusarium oxysporum f.sp. cubense JT1, a plant pathogenic fungus. ISRN Biotechnol. doi: 10.5402/2013/515091, 5 pagesGoogle Scholar
  124. Tsibakhashvili NY, Kirkesali EI, Pataraya DT, Gurielidze MA, Kalabegishvili TL, Gvarjaladze DN, Tsertsvadze GI, Frontasyeva MV, Zinicovscaia II, Wakstein MS, Khakhanov SN, Shvindina NV, Shklover VY (2011) Microbial synthesis of silver nanoparticles by Streptomyces glaucus and Spirulina platensis. Adv Sci Lett 4:3408–3417Google Scholar
  125. Turner NA, Xia F, Azhar G, Zhang X, Liu L, Wei JY (1998) Oxidative stress induces DNA fragmentation and caspase activation via the c-Jun NH2-terminal kinase pathway in H9c2 cardiac muscle cells. J Mol Cell Cardiol 30(9):1781–1789Google Scholar
  126. Usha R, Prabu E, Palaniswamy M, Venil CK, Rajendran R (2010) Synthesis of metal oxide nanoparticles by Streptomyces sp for development of antimicrobial textiles. Glob J Biotechnol Biochem 5:153–160Google Scholar
  127. Vala AK (2014) Exploration on green synthesis of gold nanoparticles by a marine-derived fungus Aspergillus sydowii. Environ Prog Sustain Energy. doi: 10.1002/ep.11949 Google Scholar
  128. Van der Veer WM, Bloemen MC, Ulrich MM, Molema G, Van Zuijlen PP, Middelkoop E, Niessen FB (2009) Potential cellular and molecular causes of hypertrophic scar formation. Burns 35:15–29PubMedGoogle Scholar
  129. Vengadesh Prabu K, Sundaramoorthi C, Devarasu S (2011) Biosynthesis of silver nanoparticles from Streptomyces aureofaciens. J Pharm Res 4:820–822Google Scholar
  130. Vidya C, Hiremath S, Chandraprabha MN, Antonyraj MAL, Gopala IV, Jain A, Bansal K (2013) Green synthesis of ZnO nanoparticles by Calotropis Gigantea. Int J Curr Eng Technol 1:118–120Google Scholar
  131. Vidyasagar GM, Shankaravva B, Begum R, Imrose, Raibagkar RL (2012) Antimicrobial activity of silver nanoparticles synthesized by Streptomyces species JF714876. Int J Pharm Sci Nanotechnol 5:1638–1642Google Scholar
  132. Waghmare SS, Deshmukh AM, Kulkarni W, Oswaldo LA (2011) Biosynthesis and characterization of manganese and zinc nanoparticles. Univ J Environ Res Technol 1:64–69Google Scholar
  133. Waghmare SS, Deshmukh AM, Sadowski Z (2014) Biosynthesis, optimization, purification and characterization of gold nanoparticles. Afr J Microbiol Res 8:138–146Google Scholar
  134. Wang Z, Li N, Zhao J, White JC, Qu P, Xing B (2012) CuO nanoparticle interaction with human epithelial cells: cellular uptake, location, export, and genotoxicity. Chem Res Toxicol 25:1512–1521PubMedGoogle Scholar
  135. Wani IA, Khatoon S, Gangulya A, Ahmed J, Ganguli AK, Ahmad T (2010) Silver nanoparticles: large scale solvothermal synthesis and optical properties. Mater Res Bull 45(8):1033–1038Google Scholar
  136. Zamir R, Azmi BZ, Ahangar HA, Zamiri G, Husin MS, Wahab ZA (2012) Preparation and characterization of silver nanoparticles in natural polymers using laser ablation. Bull Mater Sci 35(5):727–731Google Scholar
  137. Zonooz NF, Salouti M (2011) Extracellular biosynthesis of silver nanoparticles using cell filtrate of Streptomyces sp. ERI-3. Scientia Iranica 18:1631–1635Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Patrycja Golinska
    • 1
  • Magdalena Wypij
    • 1
  • Avinash P. Ingle
    • 2
  • Indarchand Gupta
    • 2
  • Hanna Dahm
    • 1
  • Mahendra Rai
    • 2
    Email author
  1. 1.Department of MicrobiologyNicolaus Copernicus UniversityTorunPoland
  2. 2.Nanobiotechnology Laboratory, Department of BiotechnologySGB Amravati UniversityAmravatiIndia

Personalised recommendations