Advertisement

Applied Microbiology and Biotechnology

, Volume 98, Issue 16, pp 7199–7209 | Cite as

A new assay for rhamnolipid detection—important virulence factors of Pseudomonas aeruginosa

  • Maisem Laabei
  • William D. Jamieson
  • Simon E. Lewis
  • Stephen P. Diggle
  • A. Tobias A. Jenkins
Methods and protocols

Abstract

Rhamnolipids (RLs) are heterogeneous glycolipid molecules that are composed of one or two l-rhamnose sugars and one or two β-hydroxy fatty acids, which can vary in their length and branch size. They are biosurfactants, predominantly produced by Pseudomonas aeruginosa and are important virulence factors, playing a major role in P. aeruginosa pathogenesis. Therefore, a fast, accurate and high-throughput method of detecting such molecules is of real importance. Here, we illustrate the ability to detect RL-producing P. aeruginosa strains with high sensitivity, based on an assay involving phospholipid vesicles encapsulated with a fluorescent dye. This vesicle-lysis assay is confirmed to be solely sensitive to RLs. We illustrate a half maximum concentration for vesicle lysis (EC50) of 40 μM (23.2 μg/mL) using pure commercial RLs and highlight the ability to semi-quantify RLs directly from the culture supernatant, requiring no extra extraction or processing steps or technical expertise. We show that this method is consistent with results from thin-layer chromatography detection and dry weight analysis of RLs but find that the widely used orcinol colorimetric test significantly underestimated RL quantity. Finally, we apply this methodology to compare RL production among strains isolated from either chronic or acute infections. We confirm a positive association between RL production and acute infection isolates (p = 0.0008), highlighting the role of RLs in certain infections.

Keywords

Rhamnolipids Pseudomonas aeruginosa Lipid vesicles Detection 

Notes

Acknowledgment

We would like to thank Prof. Mark C. Enright (University of Bath) and Southmead Hospital (Bristol, UK) for clinical bacterial strains, Dr. Stephan Heeb (University of Nottingham, UK) for the PAO1 quorum and rhlA mutant strains and Dr. Mathew J. Wargo (University of Vermont, USA) for the PAO1ΔplcH mutant strain. We also acknowledge the European Commission’s Seventh Framework Programme for funding via the EC-FP7 consortium project no.245500 Bacteriosafe and the Royal Society and NERC grant ref: NE/J007064/1.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Alhede M, Bjarnsholt T, Jensen PO, Phipps RK, Moser C, Christophersen L, Christensen LD, van Gennip M, Parsek M, Hoiby N, Rasmussen TB, Givskov M (2009) Pseudomonas aeruginosa recognizes and responds aggressively to the presence of polymorphonuclear leukocytes. Microbiology 155(Pt 11):3500–8. doi: 10.1099/mic.0.031443-0 PubMedCrossRefGoogle Scholar
  2. Aranda FJ, Espuny MJ, Marques A, Teruel JA, Manresa A, Ortiz A (2007) Thermodynamics of the interaction of a dirhamnolipid biosurfactant secreted by Pseudomonas aeruginosa with phospholipid membranes. Langmuir 23(5):2700–5. doi: 10.1021/la061464z PubMedCrossRefGoogle Scholar
  3. Barker AP, Vasil AI, Filloux A, Ball G, Wilderman PJ, Vasil ML (2004) A novel extracellular phospholipase C of Pseudomonas aeruginosa is required for phospholipid chemotaxis. Mol Microbiol 53(4):1089–98. doi: 10.1111/j.1365-2958.2004.04189.x PubMedCrossRefGoogle Scholar
  4. Bodey GP, Bolivar R, Fainstein V, Jadeja L (1983) Infections caused by Pseudomonas aeruginosa. Rev Infect Dis 5(2):279–313PubMedCrossRefGoogle Scholar
  5. Caiazza NC, Shanks RM, O'Toole GA (2005) Rhamnolipids modulate swarming motility patterns of Pseudomonas aeruginosa. J Bacteriol 187(21):7351–61. doi: 10.1128/JB.187.21.7351-7361.2005 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Deziel E, Lepine F, Milot S, Villemur R (2003) rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiology 149(Pt 8):2005–13Google Scholar
  7. Diggle SP, Winzer K, Chhabra SR, Worrall KE, Camara M, Williams P (2003) The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol Microbiol 50(1):29–43PubMedCrossRefGoogle Scholar
  8. Diggle SP, Cornelis P, Williams P, Camara M (2006) 4-quinolone signalling in Pseudomonas aeruginosa: old molecules, new perspectives. Int J Med Microbiol: IJMM 296(2–3):83–91. doi: 10.1016/j.ijmm.2006.01.038 PubMedCrossRefGoogle Scholar
  9. Diggle SP, Matthijs S, Wright VJ, Fletcher MP, Chhabra SR, Lamont IL, Kong X, Hider RC, Cornelis P, Camara M, Williams P (2007) The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem Biol 14(1):87–96. doi: 10.1016/j.chembiol.2006.11.014 PubMedCrossRefGoogle Scholar
  10. Driscoll JA, Brody SL, Kollef MH (2007) The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs 67(3):351–68PubMedCrossRefGoogle Scholar
  11. Dubern JF, Diggle SP (2008) Quorum sensing by 2-alkyl-4-quinolones in Pseudomonas aeruginosa and other bacterial species. Mol BioSyst 4(9):882–8. doi: 10.1039/b803796p PubMedCrossRefGoogle Scholar
  12. Farrow JM 3rd, Sund ZM, Ellison ML, Wade DS, Coleman JP, Pesci EC (2008) PqsE functions independently of PqsR-Pseudomonas quinolone signal and enhances the rhl quorum-sensing system. J Bacteriol 190(21):7043–51. doi: 10.1128/JB.00753-08 PubMedCentralPubMedCrossRefGoogle Scholar
  13. Fujita K, Akino T, Yoshioka H (1988) Characteristics of heat-stable extracellular hemolysin from Pseudomonas aeruginosa. Infect Immun 56(5):1385–7PubMedCentralPubMedGoogle Scholar
  14. Gallagher LA, McKnight SL, Kuznetsova MS, Pesci EC, Manoil C (2002) Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J Bacteriol 184(23):6472–80PubMedCentralPubMedCrossRefGoogle Scholar
  15. Gunther NW, Nunez A, Fett W, Solaiman DK (2005) Production of rhamnolipids by Pseudomonas chlororaphis, a nonpathogenic bacterium. Appl Environ Microbiol 71(5):2288–93. doi: 10.1128/AEM.71.5.2288-2293.2005 PubMedCentralPubMedCrossRefGoogle Scholar
  16. Haimi P, Hermansson M, Batchu KC, Virtanen JA, Somerharju P (2010) Substrate efflux propensity plays a key role in the specificity of secretory A-type phospholipases. J Biol Chem 285(1):751–60. doi: 10.1074/jbc.M109.061218 PubMedCentralPubMedCrossRefGoogle Scholar
  17. Hoffman LR, Kulasekara HD, Emerson J, Houston LS, Burns JL, Ramsey BW, Miller SI (2009) Pseudomonas aeruginosa lasR mutants are associated with cystic fibrosis lung disease progression. J Cyst Fibros 8(1):66–70. doi: 10.1016/j.jcf.2008.09.006
  18. Jensen PO, Bjarnsholt T, Phipps R, Rasmussen TB, Calum H, Christoffersen L, Moser C, Williams P, Pressler T, Givskov M, Hoiby N (2007) Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa. Microbiology 153(Pt 5):1329–38. doi: 10.1099/mic.0.2006/003863-0 PubMedCrossRefGoogle Scholar
  19. Koch AK, Kappeli O, Fiechter A, Reiser J (1991) Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants. J Bacteriol 173(13):4212–9PubMedCentralPubMedGoogle Scholar
  20. Kohler T, Guanella R, Carlet J, van Delden C (2010) Quorum sensing-dependent virulence during Pseudomonas aeruginosa colonisation and pneumonia in mechanically ventilated patients. Thorax 65(8):703–10. doi: 10.1136/thx.2009.133082 PubMedCrossRefGoogle Scholar
  21. Laabei M, Young A, Jenkins TA (2012) In vitro studies of toxic shock toxin-1-secreting Staphylococcus aureus and implications for burn care in children. Pediatr Infect Dis J 31(5):e73–7. doi: 10.1097/INF.0b013e3182493b21 PubMedCrossRefGoogle Scholar
  22. Laabei M, Jamieson WD, Massey RC, Jenkins AT (2014) Staphylococcus aureus interaction with phospholipid vesicles–a new method to accurately determine accessory gene regulator (agr) activity. PLoS One 9(1):e87270. doi: 10.1371/journal.pone.0087270 PubMedCentralPubMedCrossRefGoogle Scholar
  23. Leitermann F, Syldatk C, Hausmann R (2008) Fast quantitative determination of microbial rhamnolipids from cultivation broths by ATR-FTIR Spectroscopy. J Biol Eng 2:13. doi: 10.1186/1754-1611-2-13 PubMedCentralPubMedCrossRefGoogle Scholar
  24. Marshall SE, Hong SH, Thet NT, Jenkins AT (2013) Effect of lipid and fatty acid composition of phospholipid vesicles on long-term stability and their response to Staphylococcus aureus and Pseudomonas aeruginosa supernatants. Langmuir 29(23):6989–95. doi: 10.1021/la401679u PubMedCrossRefGoogle Scholar
  25. Mashburn LM, Whiteley M (2005) Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature 437(7057):422–5. doi: 10.1038/nature03925 PubMedCrossRefGoogle Scholar
  26. Mashburn-Warren L, Howe J, Brandenburg K, Whiteley M (2009) Structural requirements of the Pseudomonas quinolone signal for membrane vesicle stimulation. J Bacteriol 191(10):3411–4. doi: 10.1128/JB.00052-09 PubMedCentralPubMedCrossRefGoogle Scholar
  27. McKnight SL, Iglewski BH, Pesci EC (2000) The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 182(10):2702–8PubMedCentralPubMedCrossRefGoogle Scholar
  28. Meyer JM, Abdallah MA (1978) The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification and physicochemical properties. J Gen Microbiol 107:319–328CrossRefGoogle Scholar
  29. Morikawa M, Hirata Y, Imanaka T (2000) A study on the structure-function relationship of lipopeptide biosurfactants. Biochim Biophys Acta 1488(3):211–8PubMedCrossRefGoogle Scholar
  30. Ostroff RM, Vasil AI, Vasil ML (1990) Molecular comparison of a nonhemolytic and a hemolytic phospholipase C from Pseudomonas aeruginosa. J Bacteriol 172(10):5915–23PubMedCentralPubMedGoogle Scholar
  31. Pamp SJ, Tolker-Nielsen T (2007) Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa. J Bacteriol 189(6):2531–9. doi: 10.1128/JB.01515-06 PubMedCentralPubMedCrossRefGoogle Scholar
  32. Pearson JP, Pesci EC, Iglewski BH (1997) Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol 179(18):5756–67PubMedCentralPubMedGoogle Scholar
  33. Perfumo A, Rudden M, Smyth TJ, Marchant R, Stevenson PS, Parry NJ, Banat IM (2013) Rhamnolipids are conserved biosurfactants molecules: implications for their biotechnological potential. Appl Microbiol Biotechnol 97(16):7297–306. doi: 10.1007/s00253-013-4876-z PubMedCrossRefGoogle Scholar
  34. Pesci EC, Pearson JP, Seed PC, Iglewski BH (1997) Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 179(10):3127–32PubMedCentralPubMedGoogle Scholar
  35. Pesci EC, Milbank JB, Pearson JP, McKnight S, Kende AS, Greenberg EP, Iglewski BH (1999) Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 96(20):11229–34PubMedCentralPubMedCrossRefGoogle Scholar
  36. Pinzon NM, Ju LK (2009) Improved detection of rhamnolipid production using agar plates containing methylene blue and cetyl trimethylammonium bromide. Biotechnol Lett 31(10):1583–8. doi: 10.1007/s10529-009-0049-7 PubMedCrossRefGoogle Scholar
  37. Rikalovic MG, Gojgic-Cvijovic G, Vrvic MM, Karadzic I (2012) Production and characterization of rhamnolipids from Pseudomonas aeruginosa san-ai. J Serbian Chem Soc 77(1):27–42CrossRefGoogle Scholar
  38. Sanchez M, Aranda FJ, Teruel JA, Espuny MJ, Marques A, Manresa A, Ortiz A (2010) Permeabilization of biological and artificial membranes by a bacterial dirhamnolipid produced by Pseudomonas aeruginosa. J Colloid Interface Sci 341(2):240–7. doi: 10.1016/j.jcis.2009.09.042 PubMedCrossRefGoogle Scholar
  39. Schenk T, Schuphan I, Schmidt B (1995) High-performance liquid chromatographic determination of the rhamnolipids produced by Pseudomonas aeruginosa. J Chromatogr A 693(1):7–13PubMedCrossRefGoogle Scholar
  40. Schertzer JW, Whiteley M (2012) A bilayer-couple model of bacterial outer membrane vesicle biogenesis. MBio 3(2) doi:10.1128/mBio.00297-11Google Scholar
  41. Schuster M, Greenberg EP (2006) A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. Int J Med Microbiol 296(2–3):73–81. doi: 10.1016/j.ijmm.2006.01.036 PubMedCrossRefGoogle Scholar
  42. Schuster M, Sexton DJ, Diggle SP, Greenberg EP (2013) Acyl-homoserine lactone quorum sensing: from evolution to application. Annu Rev Microbiol 67:43–63. doi: 10.1146/annurev-micro-092412-155635 PubMedCrossRefGoogle Scholar
  43. Smith RS, Iglewski BH (2003) P. aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol 6(1):56–60PubMedCrossRefGoogle Scholar
  44. Smith EE, Buckley DG, Wu Z, Saenphimmachak C, Hoffman LR, D'Argenio DA, Miller SI, Ramsey BW, Speert DP, Moskowitz SM, Burns JL, Kaul R, Olson MV (2006) Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S A 103(22):8487–92. doi: 10.1073/pnas.0602138103 PubMedCentralPubMedCrossRefGoogle Scholar
  45. Van Delden C, Iglewski BH (1998) Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis 4(4):551–60. doi: 10.3201/eid0404.980405 PubMedCentralPubMedCrossRefGoogle Scholar
  46. Wagner VE, Gillis RJ, Iglewski BH (2004) Transcriptome analysis of quorum-sensing regulation and virulence factor expression in Pseudomonas aeruginosa. Vaccine 22(Suppl 1):S15–20. doi: 10.1016/j.vaccine.2004.08.011 PubMedCrossRefGoogle Scholar
  47. Wilder CN, Allada G, Schuster M (2009) Instantaneous within-patient diversity of Pseudomonas aeruginosa quorum-sensing populations from cystic fibrosis lung infections. Infect Immun 77(12):5631–9. doi: 10.1128/IAI.00755-09 PubMedCentralPubMedCrossRefGoogle Scholar
  48. Williams P, Camara M (2009) Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 12(2):182–91. doi: 10.1016/j.mib.2009.01.005 PubMedCrossRefGoogle Scholar
  49. Williams P, Winzer K, Chan WC, Camara M (2007) Look who's talking: communication and quorum sensing in the bacterial world. Philos Trans R Soc Lond B Biol Sci 362(1483):1119–34. doi: 10.1098/rstb.2007.2039 PubMedCentralPubMedCrossRefGoogle Scholar
  50. Winzer K, Williams P (2001) Quorum sensing and the regulation of virulence gene expression in pathogenic bacteria. Int J Med Microbiol 291(2):131–43. doi: 10.1078/1438-4221-00110 PubMedCrossRefGoogle Scholar
  51. Zulianello L, Canard C, Kohler T, Caille D, Lacroix JS, Meda P (2006) Rhamnolipids are virulence factors that promote early infiltration of primary human airway epithelia by Pseudomonas aeruginosa. Infect Immun 74(6):3134–47. doi: 10.1128/IAI.01772-05 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Maisem Laabei
    • 1
    • 2
  • William D. Jamieson
    • 1
  • Simon E. Lewis
    • 1
  • Stephen P. Diggle
    • 3
  • A. Tobias A. Jenkins
    • 1
  1. 1.Department of ChemistryUniversity of BathBathUK
  2. 2.Department of Biology and BiochemistryUniversity of BathBathUK
  3. 3.School of Life SciencesUniversity of NottinghamNottinghamUK

Personalised recommendations