Applied Microbiology and Biotechnology

, Volume 98, Issue 18, pp 7793–7802 | Cite as

Combination of algae and yeast fermentation for an integrated process to produce single cell oils

Biotechnological products and process engineering

Abstract

Economic and ecological reasons cause the industry to develop new innovative bio-based processes for the production of oil as renewable feedstock. Petroleum resources are expected to be depleted in the near future. Plant oils as sole substituent are highly criticized because of the competitive utilization of the agricultural area for food and energy feedstock production. Microbial lipids of oleaginous microorganisms are therefore a suitable alternative. To decrease production costs of microbial lipids and gain spatial independence from industrial sites of CO2 emission, a combination of heterotrophic and phototrophic cultivation with integrated CO2 recycling was investigated in this study. A feasibility study on a semi-pilot scale was conducted and showed that the cultivation of the oleaginous yeast Cryptococcus curvatus on a 1.2-L scale was sufficient to supply a culture of the oleaginous microalgae Phaeodactylum tricornutum in a 21-L bubble column reactor with CO2 while single cell oils were produced in both processes due to a nutrient limitation.

Keywords

Cryptococcus curvatus Phaeodactylum tricornutum Process coupling Lipid production 

References

  1. Babel W, Muller RH, Markuske KD (1983) Improvement of growth-yield of yeast on glucose to the maximum by using an additional energy source. Arch Microbiol 136(3):203–208. doi:10.1007/bf00409845 CrossRefGoogle Scholar
  2. Benemann JR, Tillett DM, Weissman JC (1987) Microalgae biotechnology. Trends Biotechnol 5(2):47–53CrossRefGoogle Scholar
  3. Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14(2):557–577. doi:10.1016/j.rser.2009.10.009 CrossRefGoogle Scholar
  4. Brown LM (1996) Uptake of carbon dioxide from flue gas by microalgae. Energy Convers Manag 37(6–8):1363–1367. doi:10.1016/0196-8904(95)00347-9 CrossRefGoogle Scholar
  5. Camacho Rubio F, Fernández FGA, Pérez JAS, Camacho FG, Grima EM (1999) Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnol Bioeng 62(1):71–86. doi:10.1002/(sici)1097-0290(19990105)62:1<71::aid-bit9>3.0.co;2-t CrossRefGoogle Scholar
  6. Carlsson AS (2009) Plant oils as feedstock alternatives to petroleum—a short survey of potential oil crop platforms. Biochimie 91(6):665–670. doi:10.1016/j.biochi.2009.03.021 PubMedCrossRefGoogle Scholar
  7. Carmo AC Jr, de Souza LKC, da Costa CEF, Longo E, Zamian JR, da Rocha Filho GN (2009) Production of biodiesel by esterification of palmitic acid over mesoporous aluminosilicate Al-MCM-41. Fuel 88(3):461–468. doi:10.1016/j.fuel.2008.10.007 CrossRefGoogle Scholar
  8. Cerff M, Morweiser M, Dillschneider R, Michel A, Menzel K, Posten C (2012) Harvesting fresh water and marine algae by magnetic separation: screening of separation parameters and high gradient magnetic filtration. Bioresour Technol 118:289–295PubMedCrossRefGoogle Scholar
  9. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306. doi:10.1016/j.biotechadv.2007.02.001 PubMedCrossRefGoogle Scholar
  10. Chisti Y, Moo-Young M (1986) Disruption of microbial cells for intracellular products. Enzym Microb Technol 8(4):194–204. doi:10.1016/0141-0229(86)90087-6 CrossRefGoogle Scholar
  11. Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44(5):1813–1819. doi:10.1021/es902838n PubMedCrossRefGoogle Scholar
  12. Dillschneider R, Steinweg C, Rosello-Sastre R, Posten C (2013) Biofuels from microalgae: photoconversion efficiency during lipid accumulation. Bioresour Technol 142:647–654PubMedCrossRefGoogle Scholar
  13. Doucha J, Lívanský K (2009) Outdoor open thin-layer microalgal photobioreactor: potential productivity. J Appl Phycol 21(1):111–117. doi:10.1007/s10811-008-9336-2 CrossRefGoogle Scholar
  14. Fábregas J, Vázquez V, Cabezas B, Otero A (1993) Tris not only controls the pH in microalgal cultures, but also feeds bacteria. J Appl Phycol 5(5):543–545. doi:10.1007/bf02182514 CrossRefGoogle Scholar
  15. Feron PHM, Hendriks CA (2005) Les différents procédés de capture du CO2 et leurs coûts. Oil Gas Sci Technol 60(3):451–459CrossRefGoogle Scholar
  16. Galloway RA, Gauch HG, Soeder CJ (1964) Effects of inhibitory levels of CO2 on Chlorella. Plant Physiol 39 (R8). http://www.nature.com/nature/journal/v206/n4979/abs/206035a0.html
  17. García Sánchez JL, Berenguel M, Rodríguez F, Fernández Sevilla JM, Brindley Alias C, Acién Fernández FG (2003) Minimization of carbon losses in pilot-scale outdoor photobioreactors by model-based predictive control. Biotechnol Bioeng 84(5):533–543. doi:10.1002/bit.10819 PubMedCrossRefGoogle Scholar
  18. Hassan M, Blanc PJ, Pareilleux A, Goma G (1994) Production of single-cell oil from prickly-pear juice fermentation by Cryptococcus curvatus grown in batch culture. World J Microbiol Biotechnol 10(5):534–537PubMedCrossRefGoogle Scholar
  19. Lee JS, Kim DK, Lee JP, Park SC, Koh JH, Cho HS, Kim SW (2002) Effects of SO2 and NO on growth of Chlorella sp. KR-1. Bioresour Technol 82(1):1–4PubMedCrossRefGoogle Scholar
  20. Liebert (1987) Final report on the safety assessment of oleic acid, lauric acid, palmitic acid, myristic acid and stearic acid. J Am Coll Toxicol 6(3):321–402CrossRefGoogle Scholar
  21. Ma FR, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70(1):1–15CrossRefGoogle Scholar
  22. Mann JE, Myers J (1968) On pigments, growth and photosynthesis of Phaeodactylum tricornutum. J Phycol 4(4):349–355. doi:10.1111/j.1529-8817.1968.tb04707.x CrossRefGoogle Scholar
  23. Matsunaga T, Takeyama H, Miura Y, Yamazaki T, Furuya H, Sode K (1995) Screening of marine cyanobacteria for high palmitoleic acid production. FEMS Microbiol Lett 133(1–2):137–141. doi:10.1016/0378-1097(95)00350-e CrossRefGoogle Scholar
  24. Meesters PAEP, Huijberts GNM, Eggink G (1996) High-cell-density cultivation of the lipid accumulating yeast Cryptococcus curvatus using glycerol as a carbon source. Appl Microbiol Biotechnol 45(5):575–579. doi:10.1007/s002530050731 CrossRefGoogle Scholar
  25. Moon NJ, Hammond EG (1978) Oil production by fermentation of lactose and effect of temperature on fatty acid composition. J Am Oil Chem Soc 55(10):683–688. doi:10.1007/bf02665361 CrossRefGoogle Scholar
  26. Puanbut M, Leesing R (2012) Integrated cultivation technique for microbial lipid production by photosynthetic microalgae and locally oleaginous yeasts. World Acad Sci Eng Technol 64:975Google Scholar
  27. Ratledge C, Cohen Z (2005) Single Cell Oils. Champaign, Illinois: AOCS PressGoogle Scholar
  28. Ratledge C, Cohen Z (2008) Microbial and algal oils: do they have a future for biodiesel or as commodity oils? Lipid Technol 20(7):155–160. doi:10.1002/lite.200800044 CrossRefGoogle Scholar
  29. Richardson JW, Outlaw JL, Allison M (2010) The economics of microalgae oil. AgBioforum 13(2):119–130Google Scholar
  30. Schlagermann P, Göttlicher G, Dillschneider R, Rosello-Sastre R, Posten C (2012) Composition of algal oil and its potential as biofuel. J Combust 2012:14. doi:10.1155/2012/285185 CrossRefGoogle Scholar
  31. Simmonds C (1919) Alcohol, its production, properties, chemistry and industrial applicationsGoogle Scholar
  32. Singh A, Nigam PS, Murphy JD (2011) Renewable fuels from algae: an answer to debatable land based fuels. Bioresour Technol 102(1):10–16. doi:10.1016/j.biortech.2010.06.032 PubMedCrossRefGoogle Scholar
  33. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96. doi:10.1263/jbb.101.87 PubMedCrossRefGoogle Scholar
  34. Tredici MR (2010) Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels 1(1):143–162. doi:10.4155/bfs.09.10 CrossRefGoogle Scholar
  35. Varma A, Buscot F (eds) (2005) Microbial metabolism in soil. In: Microorganisms in soils: roles and genesis and functions, Springer pp 129–133Google Scholar
  36. Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329(5993):796–799. doi:10.1126/science.1189003 PubMedCrossRefGoogle Scholar
  37. Yamori Y, Nara Y, Tsubouchi T, Sogawa Y, Ikeda K, Horie R (1986) Dietary prevention of stroke and its mechanisms in stroke-prone spontaneously hypertensive rats—preventive effect of dietary fiber and palmitoleic acid. J Hypertens 4(3):449–452Google Scholar
  38. Yang ZH, Miyahara H, Hatanaka A (2011) Chronic administration of palmitoleic acid reduces insulin resistance and hepatic lipid accumulation in KK-A(y) Mice with genetic type 2 diabetes. Lipids Health Dis 10(8):120. doi:10.1186/1476-511x-10-120 PubMedCentralPubMedCrossRefGoogle Scholar
  39. Yin P, Chen L, Wang Z, Qu R, Liu X, Xu Q, Ren S (2009) Biodiesel production from esterification of oleic acid over aminophosphonic acid resin D418. Fuel 102(0):499–505. doi:10.1016/j.fuel.2012.05.027 Google Scholar
  40. Yongmanitchai W, Ward OP (1991) Growth of and omega-3 fatty acid production by Phaeodactylum tricornutum under different culture conditions. Appl Environ Microbiol 57(2):419–425PubMedCentralPubMedGoogle Scholar
  41. Zhang J, Fang X, Zhu X-L, Li Y, Xu H-P, Zhao B-F, Chen L, Zhang X-D (2011) Microbial lipid production by the oleaginous yeast Cryptococcus curvatus O3 grown in fed-batch culture. Biomass Bioenergy 35(5):1906–1911. doi:10.1016/j.biombioe.2011.01.024 CrossRefGoogle Scholar
  42. Zhao X, Hu CM, Wu SG, Shen HW, Zhao ZK (2011) Lipid production by Rhodosporidium toruloides Y4 using different substrate feeding strategies. J Ind Microbiol Biotechnol 38(5):627–632. doi:10.1007/s10295-010-0808-4 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute of Process Engineering in Life Sciences, Section III: Bioprocess EngineeringKarlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Institute of Process Engineering in Life Sciences, Section II: Technical BiologyKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations