Applied Microbiology and Biotechnology

, Volume 98, Issue 13, pp 5807–5822 | Cite as

Insect antimicrobial peptides and their applications

  • Hui-Yu Yi
  • Munmun Chowdhury
  • Ya-Dong Huang
  • Xiao-Qiang YuEmail author


Insects are one of the major sources of antimicrobial peptides/proteins (AMPs). Since observation of antimicrobial activity in the hemolymph of pupae from the giant silk moths Samia Cynthia and Hyalophora cecropia in 1974 and purification of first insect AMP (cecropin) from H. cecropia pupae in 1980, over 150 insect AMPs have been purified or identified. Most insect AMPs are small and cationic, and they show activities against bacteria and/or fungi, as well as some parasites and viruses. Insect AMPs can be classified into four families based on their structures or unique sequences: the α-helical peptides (cecropin and moricin), cysteine-rich peptides (insect defensin and drosomycin), proline-rich peptides (apidaecin, drosocin, and lebocin), and glycine-rich peptides/proteins (attacin and gloverin). Among insect AMPs, defensins, cecropins, proline-rich peptides, and attacins are common, while gloverins and moricins have been identified only in Lepidoptera. Most active AMPs are small peptides of 20–50 residues, which are generated from larger inactive precursor proteins or pro-proteins, but gloverins (~14 kDa) and attacins (~20 kDa) are large antimicrobial proteins. In this mini-review, we will discuss current knowledge and recent progress in several classes of insect AMPs, including insect defensins, cecropins, attacins, lebocins and other proline-rich peptides, gloverins, and moricins, with a focus on structural-functional relationships and their potential applications.


Alpha-helical peptide Cysteine-rich peptide Glycine-rich peptide Proline-rich peptide Lipopolysaccharide Conformational changes 


  1. Abdallah NA, Shah D, Abbas D, Madkour M (2010) Stable integration and expression of a plant defensin in tomato confers resistance to fusarium wilt. GM crops 1:344–350PubMedGoogle Scholar
  2. Abdel-latief M, Hilker M (2008) Innate immunity: eggs of Manduca sexta are able to respond to parasitism by Trichogramma evanescens. Insect Biochem Mol Biol 38:136–145PubMedGoogle Scholar
  3. Aerts AM, François IE, Cammue BP, Thevissen K, (2008) The mode of antifungal action of plant, insect and human defensins. Cell Mol Life Sci 65:2069–2079Google Scholar
  4. Ahmad A, Ahmad E, Rabbani G, Haque S, Arshad M, Khan RH (2012) Identification and design of antimicrobial peptides for therapeutic applications. Curr Protein Pept Sci 13:211–223PubMedGoogle Scholar
  5. Ando K, Natori S (1988) Molecular cloning, sequencing, and characterization of cDNA for sarcotoxin IIA, an inducible antibacterial protein of Sarcophaga peregrina (flesh fly). Biochemistry 27:1715–1721PubMedGoogle Scholar
  6. Ando K, Okada M, Natori S (1987) Purification of sarcotoxin II, antibacterial proteins of Sarcophaga peregrina (flesh fly) larvae. Biochemistry 26:226–230PubMedGoogle Scholar
  7. Andres E (2012) Cationic antimicrobial peptides in clinical development, with special focus on thanatin and heliomicin. Eur J Clin Microbiol Infect Dis 31:881–888PubMedGoogle Scholar
  8. Arrowood MJ, Jaynes JM, Healey MC (1991) In vitro activities of lytic peptides against the sporozoites of Cryptosporidium parvum. Antimicrob Agents Chemother 35:224–227PubMedCentralPubMedGoogle Scholar
  9. Asling B, Dushay MS, Hultmark D (1995) Identification of early genes in the Drosophila immune response by PCR-based differential display: the Attacin A gene and the evolution of attacin-like proteins. Insect Biochem Mol Biol 25:511–518PubMedGoogle Scholar
  10. Axen A, Carlsson A, Engstrom A, Bennich H (1997) Gloverin, an antibacterial protein from the immune hemolymph of Hyalophora pupae. Eur J Biochem 247:614–619PubMedGoogle Scholar
  11. Baba K, Okada M, Kawano T, Komano H, Natori S (1987) Purification of sarcotoxin III, a new antibacterial protein of Sarcophaga peregrina. J Biochem 102:69–74PubMedGoogle Scholar
  12. Bang K, Park S, Yoo JY, Cho S (2012) Characterization and expression of attacin, an antibacterial protein-encoding gene, from the beet armyworm, Spodoptera exigua (Hubner) (Insecta: Lepidoptera: Noctuidae). Mol Biol Rep 39:5151–5159PubMedGoogle Scholar
  13. Bao Y, Yamano Y, Morishima I (2005) A novel lebocin-like gene from eri-silkworm, Samia cynthia ricini, that does not encode the antibacterial peptide lebocin. Comp Biochem Physiol B Biochem Mol Biol 140:127–131PubMedGoogle Scholar
  14. Barr SC, Rose D, Jaynes JM (1995) Activity of lytic peptides against intracellular Trypanosoma cruzi amastigotes in vitro and parasitemias in mice. J Parasitol 81:974–978PubMedGoogle Scholar
  15. Bell A (2011) Antimalarial peptides: the long and the short of it. Curr Pharm Des 17:2719–2731PubMedGoogle Scholar
  16. Boisbouvier J, Prochnicka-Chalufour A, Nieto AR, Torres JA, Nanard N, Rodriguez MH, Possani LD, Delepierre M (1998) Structural information on a cecropin-like synthetic peptide, Shiva-3 toxic to the sporogonic development of Plasmodium berghei. Eur J Biochem 257:263–273PubMedGoogle Scholar
  17. Boman HG, Nilsson-Faye I, Paul K, Rasmuson T Jr (1974) Insect immunity. I. Characteristics of an inducible cell-free antibacterial reaction in hemolymph of Samia cynthia pupae. Infect Immun 10:136–145PubMedCentralPubMedGoogle Scholar
  18. Bonmatin JM, Bonnat JL, Gallet X, Vovelle F, Ptak M, Reichhart JM, Hoffmann JA, Keppi E, Legrain M, Achstetter T (1992) Two-dimensional 1H NMR study of recombinant insect defensin A in water: resonance assignments, secondary structure and global folding. J Biomol NMR 2:235–256PubMedGoogle Scholar
  19. Boulanger N, Brun R, Ehret-Sabatier L, Kunz C, Bulet P (2002a) Immunopeptides in the defense reactions of Glossina morsitans to bacterial and Trypanosoma brucei brucei infections. Insect Biochem Mol Biol 32:369–375PubMedGoogle Scholar
  20. Boulanger N, Munks RJ, Hamilton JV, Vovelle F, Brun R, Lehane MJ, Bulet P (2002b) Epithelial innate immunity. A novel antimicrobial peptide with antiparasitic activity in the blood-sucking insect Stomoxys calcitrans. J Biol Chem 277:49921–49926PubMedGoogle Scholar
  21. Brown SE, Howard A, Kasprzak AB, Gordon KH, East PD (2008) The discovery and analysis of a diverged family of novel antifungal moricin-like peptides in the wax moth Galleria mellonella. Insect Biochem Mol Biol 38:201–212PubMedGoogle Scholar
  22. Bulet P, Stocklin R (2005) Insect antimicrobial peptides: structures, properties and gene regulation. Protein Pept Lett 12:3–11PubMedGoogle Scholar
  23. Bulet P, Cociancich S, Dimarcq JL, Lambert J, Reichhart JM, Hoffmann D, Hetru C, Hoffmann JA (1991) Insect immunity. Isolation from a coleopteran insect of a novel inducible antibacterial peptide and of new members of the insect defensin family. J Biol Chem 266:24520–24525PubMedGoogle Scholar
  24. Bulet P, Cociancich S, Reuland M, Sauber F, Bischoff R, Hegy G, Van Dorsselaer A, Hetru C, Hoffmann JA (1992) A novel insect defensin mediates the inducible antibacterial activity in larvae of the dragonfly Aeschna cyanea (Paleoptera, Odonata). Eur J Biochem 209:977–984PubMedGoogle Scholar
  25. Bulet P, Dimarcq JL, Hetru C, Lagueux M, Charlet M, Hegy G, Van Dorsselaer A, Hoffmann JA (1993) A novel inducible antibacterial peptide of Drosophila carries an O-glycosylated substitution. J Biol Chem 268:14893–14897PubMedGoogle Scholar
  26. Campo S, Manrique S, Garcia-Martinez J, San Segundo B (2008) Production of cecropin A in transgenic rice plants has an impact on host gene expression. Plant Biotechnol J 6:585–608PubMedGoogle Scholar
  27. Carlsson A, Engstrom P, Palva ET, Bennich H (1991) Attacin, an antibacterial protein from Hyalophora cecropia, inhibits synthesis of outer membrane proteins in Escherichia coli by interfering with omp gene transcription. Infect Immun 59:3040–3045PubMedCentralPubMedGoogle Scholar
  28. Carlsson A, Nystrom T, de Cock H, Bennich H (1998) Attacin—an insect immune protein –binds LPS and triggers the specific inhibition of bacterial outer-membrane protein synthesis. Microbiology 144(Pt 8):2179–2188PubMedGoogle Scholar
  29. Carvalho Ade O, Gomes VM (2011) Plant defensins and defensin-like peptides—biological activities and biotechnological applications. Curr Pharm Des 17:4270–4293PubMedGoogle Scholar
  30. Casteels P, Ampe C, Jacobs F, Vaeck M, Tempst P (1989) Apidaecins: antibacterial peptides from honeybees. EMBO J 8:2387–2391PubMedCentralPubMedGoogle Scholar
  31. Casteels P, Ampe C, Riviere L, Van Damme J, Elicone C, Fleming M, Jacobs F, Tempst P (1990) Isolation and characterization of abaecin, a major antibacterial response peptide in the honeybee (Apis mellifera). Eur J Biochem 187:381–386PubMedGoogle Scholar
  32. Casteels P, Ampe C, Jacobs F, Tempst P (1993) Functional and chemical characterization of Hymenoptaecin, an antibacterial polypeptide that is infection-inducible in the honeybee (Apis mellifera). J Biol Chem 268:7044–7054PubMedGoogle Scholar
  33. Cavallarin L, Andreu D, San Segundo B (1998) Cecropin A-derived peptides are potent inhibitors of fungal plant pathogens. Mol Plant Microbe Interact: MPMI 11:218–227PubMedGoogle Scholar
  34. Cerovsky V, Zdarek J, Fucik V, Monincova L, Voburka Z, Bem R (2010) Lucifensin, the long-sought antimicrobial factor of medicinal maggots of the blowfly Lucilia sericata. Cell Mol Life Sci 67:455–466PubMedGoogle Scholar
  35. Chae JH, Kurokawa K, So YI, Hwang HO, Kim MS, Park JW, Jo YH, Lee YS, Lee BL (2012) Purification and characterization of tenecin 4, a new anti-Gram-negative bacterial peptide, from the beetle Tenebrio molitor. Dev Comp Immunol 36:540–546PubMedGoogle Scholar
  36. Chalk R, Townson H, Ham PJ (1995) Brugia pahangi: the effects of cecropins on microfilariae in vitro and in Aedes aegypti. Exp Parasitol 80:401–406PubMedGoogle Scholar
  37. Chen HM, Wang W, Smith D, Chan SC (1997) Effects of the anti-bacterial peptide cecropin B and its analogs, cecropins B-1 and B-2, on liposomes, bacteria, and cancer cells. Biochim Biophys Acta 1336:171–179PubMedGoogle Scholar
  38. Cheng T, Zhao P, Liu C, Xu P, Gao Z, Xia Q, Xiang Z (2006) Structures, regulatory regions, and inductive expression patterns of antimicrobial peptide genes in the silkworm Bombyx mori. Genomics 87:356–365PubMedGoogle Scholar
  39. Cho WL, Fu YC, Chen CC, Ho CM (1996) Cloning and characterization of cDNAs encoding the antibacterial peptide, defensin A, from the mosquito, Aedes aegypti. Insect Biochem Mol Biol 26:395–402PubMedGoogle Scholar
  40. Choi MS, Kim YH, Park HM, Seo BY, Jung JK, Kim ST, Kim MC, Shin DB, Yun HT, Choi IS, Kim CK, Lee JY (2009) Expression of BrD1, a plant defensin from Brassica rapa, confers resistance against brown planthopper (Nilaparvata lugens) in transgenic rices. Mol Cells 28:131–137PubMedGoogle Scholar
  41. Chowdhury S, Taniai K, Hara S, Kadono-Okuda K, Kato Y, Yamamoto M, Xu J, Choi SK, Debnath NC, Choi HK, Miyanoshita A, Sugiyama M, Asaoka A, Yamakawa M (1995) cDNA cloning and gene expression of lebocin, a novel member of antibacterial peptides from the silkworm, Bombyx mori. Biochem Biophys Res Commun 214:271–278PubMedGoogle Scholar
  42. Coca M, Penas G, Gomez J, Campo S, Bortolotti C, Messeguer J, Segundo BS (2006) Enhanced resistance to the rice blast fungus Magnaporthe grisea conferred by expression of a cecropin A gene in transgenic rice. Planta 223:392–406PubMedGoogle Scholar
  43. Cociancich S, Ghazi A, Hetru C, Hoffmann JA, Letellier L (1993) Insect defensin, an inducible antibacterial peptide, forms voltage-dependent channels in Micrococcus luteus. J Biol Chem 268:19239–19245PubMedGoogle Scholar
  44. Cociancich S, Dupont A, Hegy G, Lanot R, Holder F, Hetru C, Hoffmann JA, Bulet P (1994) Novel inducible antibacterial peptides from a hemipteran insect, the sap-sucking bug Pyrrhocoris apterus. Biochem J 300(Pt 2):567–575PubMedCentralPubMedGoogle Scholar
  45. Cornet B, Bonmatin JM, Hetru C, Hoffmann JA, Ptak M, Vovelle F (1995) Refined three-dimensional solution structure of insect defensin A. Structure 3:435–448PubMedGoogle Scholar
  46. d’Alencon E, Bierne N, Girard PA, Magdelenat G, Gimenez S, Seninet I, Escoubas JM (2013) Evolutionary history of x-tox genes in three lepidopteran species: origin, evolution of primary and secondary structure and alternative splicing, generating a repertoire of immune-related proteins. Insect Biochem Mol Biol 43:54–64PubMedGoogle Scholar
  47. Da Silva P, Jouvensal L, Lamberty M, Bulet P, Caille A, Vovelle F (2003) Solution structure of termicin, an antimicrobial peptide from the termite Pseudacanthotermes spiniger. Protein Sci 12:438–446PubMedCentralPubMedGoogle Scholar
  48. Dai H, Rayaprolu S, Gong Y, Huang R, Prakash O, Jiang H (2008) Solution structure, antibacterial activity, and expression profile of Manduca sexta moricin. J Pept Sci Off Publ Eur Pept Soc 14:855–863Google Scholar
  49. DeLucca AJ, Bland JM, Jacks TJ, Grimm C, Cleveland TE, Walsh TJ (1997) Fungicidal activity of cecropin A. Antimicrob Agents Chemother 41:481–483PubMedCentralPubMedGoogle Scholar
  50. Destoumieux-Garzon D, Brehelin M, Bulet P, Boublik Y, Girard PA, Baghdiguian S, Zumbihl R, Escoubas JM (2009) Spodoptera frugiperda X-tox protein, an immune related defensin rosary, has lost the function of ancestral defensins. PLoS One 4:e6795PubMedCentralPubMedGoogle Scholar
  51. Devi L (1991) Consensus sequence for processing of peptide precursors at monobasic sites. FEBS Lett 280:189–194PubMedGoogle Scholar
  52. Dimarcq JL, Keppi E, Dunbar B, Lambert J, Reichhart JM, Hoffmann D, Rankine SM, Fothergill JE, Hoffmann JA (1988) Insect immunity. Purification and characterization of a family of novel inducible antibacterial proteins from immunized larvae of the dipteran Phormia terranovae and complete amino-acid sequence of the predominant member, diptericin A. Eur J Biochem 171:17–22PubMedGoogle Scholar
  53. Dimarcq JL, Zachary D, Hoffmann JA, Hoffmann D, Reichhart JM (1990) Insect immunity: expression of the two major inducible antibacterial peptides, defensin and diptericin, in Phormia terranovae. EMBO J 9:2507–2515PubMedCentralPubMedGoogle Scholar
  54. Ding J, Chou YY, Chang TL (2009) Defensins in viral infections. J Innate Immun 1:413–420PubMedGoogle Scholar
  55. Dushay MS, Roethele JB, Chaverri JM, Dulek DE, Syed SK, Kitami T, Eldon ED (2000) Two attacin antibacterial genes of Drosophila melanogaster. Gene 246:49–57PubMedGoogle Scholar
  56. Eckert R (2011) Road to clinical efficacy: challenges and novel strategies for antimicrobial peptide development. Future Microbiol 6:635–651PubMedGoogle Scholar
  57. Ekengren S, Hultmark D (1999) Drosophila cecropin as an antifungal agent. Insect Biochem Mol Biol 29:965–972PubMedGoogle Scholar
  58. Engstrom A, Engstrom P, Tao ZJ, Carlsson A, Bennich H (1984a) Insect immunity. The primary structure of the antibacterial protein attacin F and its relation to two native attacins from Hyalophora cecropia. EMBO J 3:2065–2070PubMedCentralPubMedGoogle Scholar
  59. Engstrom P, Carlsson A, Engstrom A, Tao ZJ, Bennich H (1984b) The antibacterial effect of attacins from the silk moth Hyalophora cecropia is directed against the outer membrane of Escherichia coli. EMBO J 3:3347–3351PubMedCentralPubMedGoogle Scholar
  60. Etebari K, Palfreyman RW, Schlipalius D, Nielsen LK, Glatz RV, Asgari S (2011) Deep sequencing-based transcriptome analysis of Plutella xylostella larvae parasitized by Diadegma semiclausum. BMC Genomics 12:446PubMedCentralPubMedGoogle Scholar
  61. Eum JH, Seo YR, Yoe SM, Kang SW, Han SS (2007) Analysis of the immune-inducible genes of Plutella xylostella using expressed sequence tags and cDNA microarray. Dev Comp Immunol 31:1107–1120PubMedGoogle Scholar
  62. Faye I, Pye A, Rasmuson T, Boman HG, Boman IA (1975) Insect immunity. 11. Simultaneous induction of antibacterial activity and selection synthesis of some hemolymph proteins in diapausing pupae of Hyalophora cecropia and Samia cynthia. Infect Immun 12:1426–1438PubMedCentralPubMedGoogle Scholar
  63. Fieck A, Hurwitz I, Kang AS, Durvasula R (2010) Trypanosoma cruzi: synergistic cytotoxicity of multiple amphipathic anti-microbial peptides to T. cruzi and potential bacterial hosts. Exp Parasitol 125:342–347PubMedCentralPubMedGoogle Scholar
  64. Fujiwara S, Imai J, Fujiwara M, Yaeshima T, Kawashima T, Kobayashi K (1990) A potent antibacterial protein in royal jelly. Purification and determination of the primary structure of royalisin. J Biol Chem 265:11333–11337PubMedGoogle Scholar
  65. Fullaondo A, Lee SY (2012) Regulation of Drosophila-virus interaction. Dev Comp Immunol 36:262–266PubMedGoogle Scholar
  66. Gandhe AS, Arunkumar KP, John SH, Nagaraju J (2006) Analysis of bacteria-challenged wild silkmoth, Antheraea mylitta (Lepidoptera) transcriptome reveals potential immune genes. BMC Genomics 7:184PubMedCentralPubMedGoogle Scholar
  67. Ganz T, Lehrer RI (1994) Defensins. Curr Opin Immunol 6:584–589PubMedGoogle Scholar
  68. Ghag SB, Shekhawat UK, Ganapathi TR (2012) Petunia floral defensins with unique prodomains as novel candidates for development of fusarium wilt resistance in transgenic banana plants. PLoS One 7:e39557PubMedCentralPubMedGoogle Scholar
  69. Girard PA, Boublik Y, Wheat CW, Volkoff AN, Cousserans F, Brehelin M, Escoubas JM (2008) X-tox: an atypical defensin derived family of immune-related proteins specific to Lepidoptera. Dev Comp Immunol 32:575–584PubMedGoogle Scholar
  70. Gunne H, Steiner H (1993) Efficient secretion of attacin from insect fat-body cells requires proper processing of the prosequence. Eur J Biochem 214:287–293PubMedGoogle Scholar
  71. Gunne H, Hellers M, Steiner H (1990) Structure of preproattacin and its processing in insect cells infected with a recombinant baculovirus. Eur J Biochem 187:699–703PubMedGoogle Scholar
  72. Gwadz RW, Kaslow D, Lee JY, Maloy WL, Zasloff M, Miller LH (1989) Effects of magainins and cecropins on the sporogonic development of malaria parasites in mosquitoes. Infect Immun 57:2628–2633PubMedCentralPubMedGoogle Scholar
  73. Hanzawa H, Shimada I, Kuzuhara T, Komano H, Kohda D, Inagaki F, Natori S, Arata Y (1990) 1H nuclear magnetic resonance study of the solution conformation of an antibacterial protein, sapecin. FEBS Lett 269:413–420PubMedGoogle Scholar
  74. Hao Z, Kasumba I, Lehane MJ, Gibson WC, Kwon J, Aksoy S (2001) Tsetse immune responses and trypanosome transmission: implications for the development of tsetse-based strategies to reduce trypanosomiasis. Proc Natl Acad Sci U S A 98:12648–12653PubMedCentralPubMedGoogle Scholar
  75. Hara S, Yamakawa M (1995a) Moricin, a novel type of antibacterial peptide isolated from the silkworm, Bombyx mori. J Biol Chem 270:29923–29927PubMedGoogle Scholar
  76. Hara S, Yamakawa M (1995b) A novel antibacterial peptide family isolated from the silkworm, Bombyx mori. Biochem J 310(Pt 2):651–656PubMedCentralPubMedGoogle Scholar
  77. Hedengren M, Borge K, Hultmark D (2000) Expression and evolution of the Drosophila attacin/diptericin gene family. Biochem Biophys Res Commun 279:574–581PubMedGoogle Scholar
  78. Hemmi H, Ishibashi J, Hara S, Yamakawa M (2002) Solution structure of moricin, an antibacterial peptide, isolated from the silkworm Bombyx mori. FEBS Lett 518:33–38PubMedGoogle Scholar
  79. Hetru C, Hoffmann JA (2009) NF-kappaB in the immune response of Drosophila. Cold Spring Harb Perspect Biol 1:a000232PubMedCentralPubMedGoogle Scholar
  80. Holak TA, Engstrom A, Kraulis PJ, Lindeberg G, Bennich H, Jones TA, Gronenborn AM, Clore GM (1988) The solution conformation of the antibacterial peptide cecropin A: a nuclear magnetic resonance and dynamical simulated annealing study. Biochemistry 27:7620–7629PubMedGoogle Scholar
  81. Hu Y, Aksoy S (2005) An antimicrobial peptide with trypanocidal activity characterized from Glossina morsitans morsitans. Insect Biochem Mol Biol 35:105–115PubMedGoogle Scholar
  82. Hultmark D, Steiner H, Rasmuson T, Boman HG (1980) Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur J Biochem 106:7–16PubMedGoogle Scholar
  83. Hultmark D, Engstrom A, Bennich H, Kapur R, Boman HG (1982) Insect immunity: isolation and structure of cecropin D and four minor antibacterial components from Cecropia pupae. Eur J Biochem 127:207–217PubMedGoogle Scholar
  84. Hultmark D, Engstrom A, Andersson K, Steiner H, Bennich H, Boman HG (1983) Insect immunity. Attacins, a family of antibacterial proteins from Hyalophora cecropia. EMBO J 2:571–576PubMedCentralPubMedGoogle Scholar
  85. Hurwitz I, Fieck A, Read A, Hillesland H, Klein N, Kang A, Durvasula R (2011) Paratransgenic control of vector borne diseases. Int J Biol Sci 7:1334–1344PubMedCentralPubMedGoogle Scholar
  86. Hurwitz I, Fieck A, Durvasula R (2012) Antimicrobial peptide delivery strategies: use of recombinant antimicrobial peptides in paratransgenic control systems. Curr Drug Targets 13:1173–1180PubMedGoogle Scholar
  87. Hwang J, Kim Y (2011) RNA interference of an antimicrobial peptide, gloverin, of the beet armyworm, Spodoptera exigua, enhances susceptibility to Bacillus thuringiensis. J Invertebr Pathol 108:194–200PubMedGoogle Scholar
  88. Hwang JS, Lee J, Kim YJ, Bang HS, Yun EY, Kim SR, Suh HJ, Kang BR, Nam SH, Jeon JP, Kim I, Lee DG (2009) Isolation and characterization of a defensin-like peptide (coprisin) from the dung beetle, Copris tripartitus. Int J Pept, pii: 136284Google Scholar
  89. Hwang B, Hwang JS, Lee J, Kim JK, Kim SR, Kim Y, Lee DG (2011) Induction of yeast apoptosis by an antimicrobial peptide, Papiliocin. Biochem Biophys Res Commun 408:89–93PubMedGoogle Scholar
  90. Imamura M, Wada S, Koizumi N, Kadotani T, Yaoi K, Sato R, Iwahana H (1999) Acaloleptins A: inducible antibacterial peptides from larvae of the beetle, Acalolepta luxuriosa. Arch Insect Biochem Physiol 40:88–98PubMedGoogle Scholar
  91. Imler JL, Bulet P (2005) Antimicrobial peptides in Drosophila: structures, activities and gene regulation. Chem Immunol Allergy 86:1–21PubMedGoogle Scholar
  92. Iwai H, Nakajima Y, Natori S, Arata Y, Shimada I (1993) Solution conformation of an antibacterial peptide, sarcotoxin IA, as determined by 1H-NMR. Eur J Biochem 217:639–644PubMedGoogle Scholar
  93. Jan PS, Huang HY, Chen HM (2010) Expression of a synthesized gene encoding cationic peptide cecropin B in transgenic tomato plants protects against bacterial diseases. Appl Environ Microbiol 76:769–775PubMedCentralPubMedGoogle Scholar
  94. Jarczak J, Kosciuczuk EM, Lisowski P, Strzalkowska N, Jozwik A, Horbanczuk J, Krzyzewski J, Zwierzchowski L, Bagnicka E (2013) Defensins: natural component of human innate immunity. Hum Immunol 74:1069–1079PubMedGoogle Scholar
  95. Jaynes JM, Burton CA, Barr SB, Jeffers GW, Julian GR, White KL, Enright FM, Klei TR, Laine RA (1988) In vitro cytocidal effect of novel lytic peptides on Plasmodium falciparum and Trypanosoma cruzi. FASEB J 2:2878–2883PubMedGoogle Scholar
  96. Jha S, Chattoo BB (2010) Expression of a plant defensin in rice confers resistance to fungal phytopathogens. Transgenic Res 19:373–384PubMedGoogle Scholar
  97. Kaneko Y, Tanaka H, Ishibashi J, Iwasaki T, Yamakawa M (2008) Gene expression of a novel defensin antimicrobial peptide in the silkworm, Bombyx mori. Biosci Biotechnol Biochem 72:2353–2361PubMedGoogle Scholar
  98. Kang D, Lundstrom A, Steiner H (1996) Trichoplusia ni attacin A, a differentially displayed insect gene coding for an antibacterial protein. Gene 174:245–249PubMedGoogle Scholar
  99. Kaur J, Thokala M, Robert-Seilaniantz A, Zhao P, Peyret H, Berg H, Pandey S, Jones J, Shah D (2012) Subcellular targeting of an evolutionarily conserved plant defensin MtDef4.2 determines the outcome of plant-pathogen interaction in transgenic Arabidopsis. Mol Plant Pathol 13:1032–1046PubMedGoogle Scholar
  100. Kawaoka S, Katsuma S, Daimon T, Isono R, Omuro N, Mita K, Shimada T (2008) Functional analysis of four Gloverin-like genes in the silkworm, Bombyx mori. Arch Insect Biochem Physiol 67:87–96PubMedGoogle Scholar
  101. Kim W, Koo H, Richman AM, Seeley D, Vizioli J, Klocko AD, O'Brochta DA (2004) Ectopic expression of a cecropin transgene in the human malaria vector mosquito Anopheles gambiae (Diptera: Culicidae): effects on susceptibility to Plasmodium. J Med Entomol 41:447–455PubMedGoogle Scholar
  102. Kim SR, Hong MY, Park SW, Choi KH, Yun EY, Goo TW, Kang SW, Suh HJ, Kim I, Hwang JS (2010) Characterization and cDNA cloning of a cecropin-like antimicrobial peptide, papiliocin, from the swallowtail butterfly, Papilio xuthus. Mol Cells 29:419–423PubMedGoogle Scholar
  103. Kim JK, Lee E, Shin S, Jeong KW, Lee JY, Bae SY, Kim SH, Lee J, Kim SR, Lee DG, Hwang JS, Kim Y (2011) Structure and function of papiliocin with antimicrobial and anti-inflammatory activities isolated from the swallowtail butterfly, Papilio xuthus. J Biol Chem 286:41296–41311PubMedCentralPubMedGoogle Scholar
  104. Kishimoto K, Fujimoto S, Matsumoto K, Yamano Y, Morishima I (2002) Protein purification, cDNA cloning and gene expression of attacin, an antibacterial protein, from eri-silkworm, Samia cynthia ricini. Insect Biochem Mol Biol 32:881–887PubMedGoogle Scholar
  105. Kockum K, Faye I, Hofsten PV, Lee JY, Xanthopoulos KG, Boman HG (1984) Insect immunity. Isolation and sequence of two cDNA clones corresponding to acidic and basic attacins from Hyalophora cecropia. EMBO J 3:2071–2075PubMedCentralPubMedGoogle Scholar
  106. Kokoza V, Ahmed A, Cho WL, Jasinskiene N, James AA, Raikhel A (2000) Engineering blood meal-activated systemic immunity in the yellow fever mosquito, Aedes aegypti. Proc Natl Acad Sci U S A 97:9144–9149PubMedCentralPubMedGoogle Scholar
  107. Kokoza V, Ahmed A, Woon Shin S, Okafor N, Zou Z, Raikhel AS (2010) Blocking of Plasmodium transmission by cooperative action of Cecropin A and Defensin A in transgenic Aedes aegypti mosquitoes. Proc Natl Acad Sci U S A 107:8111–8116PubMedCentralPubMedGoogle Scholar
  108. Komano H, Homma K, Natori S (1991) Involvement of sapecin in embryonic cell proliferation of Sarcophaga peregrina (flesh fly). FEBS Lett 289:167–170PubMedGoogle Scholar
  109. Korting HC, Schollmann C, Stauss-Grabo M, Schafer-Korting M (2012) Antimicrobial peptides and skin: a paradigm of translational medicine. Skin Pharmacol Physiol 25:323–334PubMedGoogle Scholar
  110. Kwon YM, Kim HJ, Kim YI, Kang YJ, Lee IH, Jin BR, Han YS, Cheon HM, Ha NG, Seo SJ (2008) Comparative analysis of two attacin genes from Hyphantria cunea. Comp Biochem Physiol B Biochem Mol Biol 151:213–220PubMedGoogle Scholar
  111. Lambert J, Keppi E, Dimarcq JL, Wicker C, Reichhart JM, Dunbar B, Lepage P, Van Dorsselaer A, Hoffmann J, Fothergill J, Hoffmann D (1989) Insect immunity: isolation from immune blood of the dipteran Phormia terranovae of two insect antibacterial peptides with sequence homology to rabbit lung macrophage bactericidal peptides. Proc Natl Acad Sci U S A 86:262–266PubMedCentralPubMedGoogle Scholar
  112. Lamberty M, Ades S, Uttenweiler-Joseph S, Brookhart G, Bushey D, Hoffmann JA, Bulet P (1999) Insect immunity. Isolation from the lepidopteran Heliothis virescens of a novel insect defensin with potent antifungal activity. J Biol Chem 274:9320–9326PubMedGoogle Scholar
  113. Lamberty M, Caille A, Landon C, Tassin-Moindrot S, Hetru C, Bulet P, Vovelle F (2001) Solution structures of the antifungal heliomicin and a selected variant with both antibacterial and antifungal activities. Biochemistry 40:11995–12003PubMedGoogle Scholar
  114. Landon C, Sodano P, Hetru C, Hoffmann J, Ptak M (1997) Solution structure of drosomycin, the first inducible antifungal protein from insects. Protein Sci 6:1878–1884PubMedCentralPubMedGoogle Scholar
  115. Landon C, Meudal H, Boulanger N, Bulet P, Vovelle F (2006) Solution structures of stomoxyn and spinigerin, two insect antimicrobial peptides with an alpha-helical conformation. Biopolymers 81:92–103PubMedGoogle Scholar
  116. Lavine MD, Chen G, Strand MR (2005) Immune challenge differentially affects transcript abundance of three antimicrobial peptides in hemocytes from the moth Pseudoplusia includens. Insect Biochem Mol Biol 35:1335–1346PubMedGoogle Scholar
  117. Lazzaro BP (2008) Natural selection on the Drosophila antimicrobial immune system. Curr Opin Microbiol 11:284–289PubMedCentralPubMedGoogle Scholar
  118. Lee SY, Moon HJ, Kurata S, Kurama T, Natori S, Lee BL (1994) Purification and molecular cloning of cDNA for an inducible antibacterial protein of larvae of a coleopteran insect, Holotrichia diomphalia. J Biochem 115:82–86PubMedGoogle Scholar
  119. Lee SY, Moon HJ, Kawabata S, Kurata S, Natori S, Lee BL (1995) A sapecin homologue of Holotrichia diomphalia: purification, sequencing and determination of disulfide pairs. Biol Pharm Bull 18:457–459PubMedGoogle Scholar
  120. Lee KH, Hong SY, Oh JE (1998) Synthesis and structure-function study about tenecin 1, an antibacterial protein from larvae of Tenebrio molitor. FEBS Lett 439:41–45PubMedGoogle Scholar
  121. Lee YS, Yun EK, Jang WS, Kim I, Lee JH, Park SY, Ryu KS, Seo SJ, Kim CH, Lee IH (2004) Purification, cDNA cloning and expression of an insect defensin from the great wax moth, Galleria mellonella. Insect Mol Biol 13:65–72PubMedGoogle Scholar
  122. Lee E, Jeong KW, Lee J, Shin A, Kim JK, Lee J, Lee DG, Kim Y (2013a) Structure-activity relationships of cecropin-like peptides and their interactions with phospholipid membrane. BMB Rep 46:282–287PubMedGoogle Scholar
  123. Lee M, Bang K, Kwon H, Cho S (2013b) Enhanced antibacterial activity of an attacin-coleoptericin hybrid protein fused with a helical linker. Mol Biol Rep 40:3953–3960PubMedGoogle Scholar
  124. Lehane MJ, Wu D, Lehane SM (1997) Midgut-specific immune molecules are produced by the blood-sucking insect Stomoxys calcitrans. Proc Natl Acad Sci U S A 94:11502–11507PubMedCentralPubMedGoogle Scholar
  125. Lehrer RI, Lu W (2012) alpha-Defensins in human innate immunity. Immunol Rev 245:84–112PubMedGoogle Scholar
  126. Lemaitre B, Hoffmann J (2007) The host defense of Drosophila melanogaster. Annu Rev Immunol 25:697–743PubMedGoogle Scholar
  127. Lepage P, Bitsch F, Roecklin D, Keppi E, Dimarcq JL, Reichhart JM, Hoffmann JA, Roitsch C, Van Dorseelaer A (1991) Determination of disulfide bridges in natural and recombinant insect defensin A. Eur J Biochem 196:735–742PubMedGoogle Scholar
  128. Levashina EA, Ohresser S, Bulet P, Reichhart JM, Hetru C, Hoffmann JA (1995) Metchnikowin, a novel immune-inducible proline-rich peptide from Drosophila with antibacterial and antifungal properties. Eur J Biochem 233:694–700PubMedGoogle Scholar
  129. Levitin A, Whiteway M (2008) Drosophila innate immunity and response to fungal infections. Cell Microbiol 10:1021–1026PubMedGoogle Scholar
  130. Li ZQ, Merrifield RB, Boman IA, Boman HG (1988) Effects on electrophoretic mobility and antibacterial spectrum of removal of two residues from synthetic sarcotoxin IA and addition of the same residues to cecropin B. FEBS Lett 231:299–302PubMedGoogle Scholar
  131. Li WF, Ma GX, Zhou XX (2006) Apidaecin-type peptides: biodiversity, structure-function relationships and mode of action. Peptides 27:2350–2359PubMedGoogle Scholar
  132. Li Z, Zhou M, Zhang Z, Ren L, Du L, Zhang B, Xu H, Xin Z (2011) Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis. Funct Integr Genom 11:63–70Google Scholar
  133. Liu G, Kang D, Steiner H (2000) Trichoplusia ni lebocin, an inducible immune gene with a downstream insertion element. Biochem Biophys Res Commun 269:803–807PubMedGoogle Scholar
  134. Lowenberger C, Bulet P, Charlet M, Hetru C, Hodgeman B, Christensen BM, Hoffmann JA (1995) Insect immunity: isolation of three novel inducible antibacterial defensins from the vector mosquito, Aedes aegypti. Insect Biochem Mol Biol 25:867–873PubMedGoogle Scholar
  135. Lundstrom A, Liu G, Kang D, Berzins K, Steiner H (2002) Trichoplusia ni gloverin, an inducible immune gene encoding an antibacterial insect protein. Insect Biochem Mol Biol 32:795–801PubMedGoogle Scholar
  136. Mackintosh JA, Gooley AA, Karuso PH, Beattie AJ, Jardine DR, Veal DA (1998a) A gloverin-like antibacterial protein is synthesized in Helicoverpa armigera following bacterial challenge. Dev Comp Immunol 22:387–399PubMedGoogle Scholar
  137. Mackintosh JA, Veal DA, Beattie AJ, Gooley AA (1998b) Isolation from an ant Myrmecia gulosa of two inducible O-glycosylated proline-rich antibacterial peptides. J Biol Chem 273:6139–6143PubMedGoogle Scholar
  138. Maget-Dana R, Ptak M (1997) Penetration of the insect defensin A into phospholipid monolayers and formation of defensin A-lipid complexes. Biophys J 73:2527–2533PubMedCentralPubMedGoogle Scholar
  139. Matsuyama K, Natori S (1988a) Molecular cloning of cDNA for sapecin and unique expression of the sapecin gene during the development of Sarcophaga peregrina. J Biol Chem 263:17117–17121PubMedGoogle Scholar
  140. Matsuyama K, Natori S (1988b) Purification of three antibacterial proteins from the culture medium of NIH-Sape-4, an embryonic cell line of Sarcophaga peregrina. J Biol Chem 263:17112–17116PubMedGoogle Scholar
  141. Matsuyama K, Natori S (1990) Mode of action of sapecin, a novel antibacterial protein of Sarcophaga peregrina (flesh fly). J Biochem 108:128–132PubMedGoogle Scholar
  142. McGwire BS, Olson CL, Tack BF, Engman DM (2003) Killing of African trypanosomes by antimicrobial peptides. J Infect Dis 188:146–152PubMedGoogle Scholar
  143. Mitsuhara I, Matsufuru H, Ohshima M, Kaku H, Nakajima Y, Murai N, Natori S, Ohashi Y (2000) Induced expression of sarcotoxin IA enhanced host resistance against both bacterial and fungal pathogens in transgenic tobacco. Mol Plant Microbe Interact: MPMI 13:860–868PubMedGoogle Scholar
  144. Moon HJ, Lee SY, Kurata S, Natori S, Lee BL (1994) Purification and molecular cloning of cDNA for an inducible antibacterial protein from larvae of the coleopteran, Tenebrio molitor. J Biochem 116:53–58PubMedGoogle Scholar
  145. Moore AJ, Beazley WD, Bibby MC, Devine DA (1996) Antimicrobial activity of cecropins. J Antimicrob Chemother 37:1077–1089PubMedGoogle Scholar
  146. Moreno-Habel DA, Biglang-awa IM, Dulce A, Luu DD, Garcia P, Weers PM, Haas-Stapleton EJ (2012) Inactivation of the budded virus of Autographa californica M nucleopolyhedrovirus by gloverin. J Invertebr Pathol 110:92–101Google Scholar
  147. Moy RH, Cherry S (2013) Antimicrobial autophagy: a conserved innate immune response in Drosophila. J Innate Immun 5:444–455PubMedCentralPubMedGoogle Scholar
  148. Mrinal N, Nagaraju J (2008) Intron loss is associated with gain of function in the evolution of the gloverin family of antibacterial genes in Bombyx mori. J Biol Chem 283:23376–23387PubMedGoogle Scholar
  149. Nadal A, Montero M, Company N, Badosa E, Messeguer J, Montesinos L, Montesinos E, Pla M (2012) Constitutive expression of transgenes encoding derivatives of the synthetic antimicrobial peptide BP100: impact on rice host plant fitness. BMC Plant Biol 12:159PubMedCentralPubMedGoogle Scholar
  150. Nakajima Y, Qu XM, Natori S (1987) Interaction between liposomes and sarcotoxin IA, a potent antibacterial protein of Sarcophaga peregrina (flesh fly). J Biol Chem 262:1665–1669PubMedGoogle Scholar
  151. Nanbu R, Nakajima Y, Ando K, Natori S (1988) Novel feature of expression of the sarcotoxin IA gene in development of Sarcophaga peregrina. Biochem Biophys Res Commun 150:540–544PubMedGoogle Scholar
  152. Ntui VO, Thirukkumaran G, Azadi P, Khan RS, Nakamura I, Mii M (2010) Stable integration and expression of wasabi defensin gene in “Egusi” melon (Colocynthis citrullus L.) confers resistance to Fusarium wilt and Alternaria leaf spot. Plant Cell Rep 29:943–954PubMedGoogle Scholar
  153. Oard SV, Enright FM (2006) Expression of the antimicrobial peptides in plants to control phytopathogenic bacteria and fungi. Plant Cell Rep 25:561–572PubMedGoogle Scholar
  154. Oh D, Shin SY, Lee S, Kang JH, Kim SD, Ryu PD, Hahm KS, Kim Y (2000) Role of the hinge region and the tryptophan residue in the synthetic antimicrobial peptides, cecropin A(1-8)-magainin 2(1-12) and its analogues, on their antibiotic activities and structures. Biochemistry 39:11855–11864PubMedGoogle Scholar
  155. Ohshima M, Mitsuhara I, Okamoto M, Sawano S, Nishiyama K, Kaku H, Natori S, Ohashi Y (1999) Enhanced resistance to bacterial diseases of transgenic tobacco plants overexpressing sarcotoxin IA, a bactericidal peptide of insect. J Biochem 125:431–435PubMedGoogle Scholar
  156. Oizumi Y, Hemmi H, Minami M, Asaoka A, Yamakawa M (2005) Isolation, gene expression and solution structure of a novel moricin analogue, antibacterial peptide from a lepidopteran insect, Spodoptera litura. Biochim Biophys Acta 1752:83–92PubMedGoogle Scholar
  157. Okada M, Natori S (1985) Primary structure of sarcotoxin I, an antibacterial protein induced in the hemolymph of Sarcophaga peregrina (flesh fly) larvae. J Biol Chem 260:7174–7177PubMedGoogle Scholar
  158. Okemoto K, Nakajima Y, Fujioka T, Natori S (2002) Participation of two N-terminal residues in LPS-neutralizing activity of sarcotoxin IA. J Biochem 131:277–281PubMedGoogle Scholar
  159. Osusky M, Zhou G, Osuska L, Hancock RE, Kay WW, Misra S (2000) Transgenic plants expressing cationic peptide chimeras exhibit broad-spectrum resistance to phytopathogens. Nat Biotechnol 18:1162–1166PubMedGoogle Scholar
  160. Otvos L Jr (2000) Antibacterial peptides isolated from insects. J Pept Sci 6:497–511PubMedGoogle Scholar
  161. Ourth DD, Lockey TD, Renis HE (1994) Induction of cecropin-like and attacin-like antibacterial but not antiviral activity in Heliothis virescens larvae. Biochem Biophys Res Commun 200:35–44PubMedGoogle Scholar
  162. Portieles R, Ayra C, Gonzalez E, Gallo A, Rodriguez R, Chacon O, Lopez Y, Rodriguez M, Castillo J, Pujol M, Enriquez G, Borroto C, Trujillo L, Thomma BP, Borras-Hidalgo O (2010) NmDef02, a novel antimicrobial gene isolated from Nicotiana megalosiphon confers high-level pathogen resistance under greenhouse and field conditions. Plant Biotechnol J 8:678–690PubMedGoogle Scholar
  163. Pretzel J, Mohring F, Rahlfs S, Becker K (2013) Antiparasitic peptides. Adv Biochem Eng Biotechnol 135:157–192PubMedGoogle Scholar
  164. Rabel D, Charlet M, Ehret-Sabatier L, Cavicchioli L, Cudic M, Otvos L Jr, Bulet P (2004) Primary structure and in vitro antibacterial properties of the Drosophila melanogaster attacin C Pro-domain. J Biol Chem 279:14853–14859PubMedGoogle Scholar
  165. Rahnamaeian M, Vilcinskas A (2012) Defense gene expression is potentiated in transgenic barley expressing antifungal peptide Metchnikowin throughout powdery mildew challenge. J Plant Res 125:115–124PubMedGoogle Scholar
  166. Rahnamaeian M, Langen G, Imani J, Khalifa W, Altincicek B, von Wettstein D, Kogel KH, Vilcinskas A (2009) Insect peptide metchnikowin confers on barley a selective capacity for resistance to fungal ascomycetes pathogens. J Exp Bot 60:4105–4114PubMedCentralPubMedGoogle Scholar
  167. Rao XJ, Yu XQ (2010) Lipoteichoic acid and lipopolysaccharide can activate antimicrobial peptide expression in the tobacco hornworm Manduca sexta. Dev Comp Immunol 34:1119–1128PubMedCentralPubMedGoogle Scholar
  168. Rao XJ, Xu XX, Yu XQ (2011) Manduca sexta moricin promoter elements can increase promoter activities of Drosophila melanogaster antimicrobial peptide genes. Insect Biochem Mol Biol 41:982–992PubMedCentralPubMedGoogle Scholar
  169. Rao XJ, Xu XX, Yu XQ (2012) Functional analysis of two lebocin-related proteins from Manduca sexta. Insect Biochem Mol Biol 42:231–239PubMedCentralPubMedGoogle Scholar
  170. Rayaprolu S, Wang Y, Kanost MR, Hartson S, Jiang H (2010) Functional analysis of four processing products from multiple precursors encoded by a lebocin-related gene from Manduca sexta. Dev Comp Immunol 34:638–647PubMedCentralPubMedGoogle Scholar
  171. Reed WA, White KL, Enright FM, Holck J, Jaynes JM, Jeffers GW (1992) Enhanced in vitro growth of murine fibroblast cells and preimplantation embryos cultured in medium supplemented with an amphipathic peptide. Mol Reprod Dev 31:106–113PubMedGoogle Scholar
  172. Rees JA, Moniatte M, Bulet P (1997) Novel antibacterial peptides isolated from a European bumblebee, Bombus pascuorum (Hymenoptera, Apoidea). Insect Biochem Mol Biol 27:413–422PubMedGoogle Scholar
  173. Reichhart JM, Essrich M, Dimarcq JL, Hoffmann D, Hoffmann JA, Lagueux M (1989) Insect immunity. Isolation of cDNA clones corresponding to diptericin, an inducible antibacterial peptide from Phormia terranovae (Diptera). Transcriptional profiles during immunization. Eur J Biochem 182:423–427PubMedGoogle Scholar
  174. Robertson M, Postlethwait JH (1986) The humoral antibacterial response of Drosophila adults. Dev Comp Immunol 10:167–179PubMedGoogle Scholar
  175. Rodriguez MC, Zamudio F, Torres JA, Gonzalez-Ceron L, Possani LD, Rodriguez MH (1995) Effect of a cecropin-like synthetic peptide (Shiva-3) on the sporogonic development of Plasmodium berghei. Exp Parasitol 80:596–604PubMedGoogle Scholar
  176. Sagisaka A, Miyanoshita A, Ishibashi J, Yamakawa M (2001) Purification, characterization and gene expression of a glycine and proline-rich antibacterial protein family from larvae of a beetle, Allomyrina dichotoma. Insect Mol Biol 10:293–302PubMedGoogle Scholar
  177. Samakovlis C, Kimbrell DA, Kylsten P, Engstrom A, Hultmark D (1990) The immune response in Drosophila: pattern of cecropin expression and biological activity. EMBO J 9:2969–2976PubMedCentralPubMedGoogle Scholar
  178. Sarika, Iquebal MA, Rai A (2012) Biotic stress resistance in agriculture through antimicrobial peptides. Peptides 36:322–330PubMedGoogle Scholar
  179. Schuhmann B, Seitz V, Vilcinskas A, Podsiadlowski L (2003) Cloning and expression of gallerimycin, an antifungal peptide expressed in immune response of greater wax moth larvae, Galleria mellonella. Arch Insect Biochem Physiol 53:125–133PubMedGoogle Scholar
  180. Scocchi M, Tossi A, Gennaro R (2011) Proline-rich antimicrobial peptides: converging to a non-lytic mechanism of action. Cell Mol Life Sci 68:2317–2330PubMedGoogle Scholar
  181. Seitz V, Clermont A, Wedde M, Hummel M, Vilcinskas A, Schlatterer K, Podsiadlowski L (2003) Identification of immunorelevant genes from greater wax moth (Galleria mellonella) by a subtractive hybridization approach. Dev Comp Immunol 27:207–215PubMedGoogle Scholar
  182. Seo MD, Won HS, Kim JH, Mishig-Ochir T, Lee BJ (2012) Antimicrobial peptides for therapeutic applications: a review. Molecules 17:12276–12286PubMedGoogle Scholar
  183. Seufi AM, Hafez EE, Galal FH (2011) Identification, phylogenetic analysis and expression profile of an anionic insect defensin gene, with antibacterial activity, from bacterial-challenged cotton leafworm, Spodoptera littoralis. BMC Mol Biol 12:47PubMedCentralPubMedGoogle Scholar
  184. Shahabuddin M, Fields I, Bulet P, Hoffmann JA, Miller LH (1998) Plasmodium gallinaceum: differential killing of some mosquito stages of the parasite by insect defensin. Exp Parasitol 89:103–112PubMedGoogle Scholar
  185. Sharma A, Sharma R, Imamura M, Yamakawa M, Machii H (2000) Transgenic expression of cecropin B, an antibacterial peptide from Bombyx mori, confers enhanced resistance to bacterial leaf blight in rice. FEBS Lett 484:7–11PubMedGoogle Scholar
  186. Silva JL, Barbosa JF, Bravo JP, Souza EM, Huergo LF, Pedrosa FO, Esteves E, Daffre S, Fernandez MA (2010) Induction of a gloverin-like antimicrobial polypeptide in the sugarcane borer Diatraea saccharalis challenged by septic injury. Braz J Med Biol Res 43:431–436PubMedGoogle Scholar
  187. Steiner H, Hultmark D, Engstrom A, Bennich H, Boman HG (1981) Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292:246–248PubMedGoogle Scholar
  188. Sugiyama M, Kuniyoshi H, Kotani E, Taniai K, Kadono-Okuda K, Kato Y, Yamamoto M, Shimabukuro M, Chowdhury S, Xu J, Choi SK, Kataoka H, Suzuki A, Yamakawa M (1995) Characterization of a Bombyx mori cDNA encoding a novel member of the attacin family of insect antibacterial proteins. Insect Biochem Mol Biol 25:385–392PubMedGoogle Scholar
  189. Sun SC, Lindstrom I, Lee JY, Faye I (1991) Structure and expression of the attacin genes in Hyalophora cecropia. Eur J Biochem 196:247–254PubMedGoogle Scholar
  190. Suttmann H, Retz M, Paulsen F, Harder J, Zwergel U, Kamradt J, Wullich B, Unteregger G, Stockle M, Lehmann J (2008) Antimicrobial peptides of the Cecropin-family show potent antitumor activity against bladder cancer cells. BMC Urol 8:5PubMedCentralPubMedGoogle Scholar
  191. Swathi Anuradha T, Divya K, Jami SK, Kirti PB (2008) Transgenic tobacco and peanut plants expressing a mustard defensin show resistance to fungal pathogens. Plant Cell Rep 27:1777–1786PubMedGoogle Scholar
  192. Tamez-Guerra P, Valadez-Lira JA, Alcocer-Gonzalez JM, Oppert B, Gomez-Flores R, Tamez-Guerra R, Rodriguez-Padilla C (2008) Detection of genes encoding antimicrobial peptides in Mexican strains of Trichoplusia ni (Hubner) exposed to Bacillus thuringiensis. J Invertebr Pathol 98:218–227PubMedGoogle Scholar
  193. Taniai K, Furukawa S, Shono T, Yamakawa M (1996a) Elicitors triggering the simultaneous gene expression of antibacterial proteins of the silkworm, Bombyx mori. Biochem Biophys Res Commun 226:783–790PubMedGoogle Scholar
  194. Taniai K, Ishii T, Sugiyama M, Miyanoshita A, Yamakawa M (1996b) Nucleotide sequence of 5′-upstream region and expression of a silkworm gene encoding a new member of the attacin family. Biochem Biophys Res Commun 220:594–599PubMedGoogle Scholar
  195. Thevissen K, Kristensen HH, Thomma BP, Cammue BP, Francois IE (2007) Therapeutic potential of antifungal plant and insect defensins. Drug Discov Today 12:966–971PubMedGoogle Scholar
  196. Ueda K, Imamura M, Satto A, Sato R (2005) Purification and cDNA cloning of an insect defensin from larvae of the longicorn beetle, Acalolepta luxuriosa. Appl Entomol Zool 40:335–345Google Scholar
  197. Veenstra JA (2000) Mono- and dibasic proteolytic cleavage sites in insect neuroendocrine peptide precursors. Arch Insect Biochem Physiol 43:49–63PubMedGoogle Scholar
  198. Vizioli J, Bulet P, Charlet M, Lowenberger C, Blass C, Muller HM, Dimopoulos G, Hoffmann J, Kafatos FC, Richman A (2000) Cloning and analysis of a cecropin gene from the malaria vector mosquito, Anopheles gambiae. Insect Mol Biol 9:75–84PubMedGoogle Scholar
  199. Vizioli J, Richman AM, Uttenweiler-Joseph S, Blass C, Bulet P (2001) The defensin peptide of the malaria vector mosquito Anopheles gambiae: antimicrobial activities and expression in adult mosquitoes. Insect Biochem Mol Biol 31:241–248PubMedGoogle Scholar
  200. Volkoff AN, Rocher J, d’Alencon E, Bouton M, Landais I, Quesada-Moraga E, Vey A, Fournier P, Mita K, Devauchelle G (2003) Characterization and transcriptional profiles of three Spodoptera frugiperda genes encoding cysteine-rich peptides. A new class of defensin-like genes from lepidopteran insects? Gene 319:43–53PubMedGoogle Scholar
  201. Wachinger M, Kleinschmidt A, Winder D, von Pechmann N, Ludvigsen A, Neumann M, Holle R, Salmons B, Erfle V, Brack-Werner R (1998) Antimicrobial peptides melittin and cecropin inhibit replication of human immunodeficiency virus 1 by suppressing viral gene expression. J Gen Virol 79(Pt 4):731–740PubMedGoogle Scholar
  202. Wang J, Hu C, Wu Y, Stuart A, Amemiya C, Berriman M, Toyoda A, Hattori M, Aksoy S (2008) Characterization of the antimicrobial peptide attacin loci from Glossina morsitans. Insect Mol Biol 17:293–302PubMedCentralPubMedGoogle Scholar
  203. Wang LN, Yu B, Han GQ, Chen DW (2010a) Molecular cloning, expression in Escherichia coli of Attacin A gene from Drosophila and detection of biological activity. Mol Biol Rep 37:2463–2469PubMedGoogle Scholar
  204. Wang Q, Liu Y, He HJ, Zhao XF, Wang JX (2010b) Immune responses of Helicoverpa armigera to different kinds of pathogens. BMC Immunol 11:9PubMedCentralPubMedGoogle Scholar
  205. Wicker C, Reichhart JM, Hoffmann D, Hultmark D, Samakovlis C, Hoffmann JA (1990) Insect immunity. Characterization of a Drosophila cDNA encoding a novel member of the diptericin family of immune peptides. J Biol Chem 265:22493–22498PubMedGoogle Scholar
  206. Wilmes M, Cammue BP, Sahl HG, Thevissen K (2011) Antibiotic activities of host defense peptides: more to it than lipid bilayer perturbation. Nat Prod Rep 28:1350–1358PubMedGoogle Scholar
  207. Wilson SS, Wiens ME, Smith JG (2013) Antiviral mechanisms of human defensins. J Mol Biol 425:4965–4980PubMedGoogle Scholar
  208. Xu XX, Zhong X, Yi HY, Yu XQ (2012) Manduca sexta gloverin binds microbial components and is active against bacteria and fungi. Dev Comp Immunol 38:275–284PubMedCentralPubMedGoogle Scholar
  209. Yagi-Utsumi M, Yamaguchi Y, Boonsri P, Iguchi T, Okemoto K, Natori S, Kato K (2013) Stable isotope-assisted NMR characterization of interaction between lipid A and sarcotoxin IA, a cecropin-type antibacterial peptide. Biochem Biophys Res Commun 431:136–140PubMedGoogle Scholar
  210. Yamada K, Natori S (1993) Purification, sequence and antibacterial activity of two novel sapecin homologues from Sarcophaga embryonic cells: similarity of sapecin B to charybdotoxin. Biochem J 291(Pt 1):275–279PubMedCentralPubMedGoogle Scholar
  211. Yamada K, Natori S (1994) Characterization of the antimicrobial peptide derived from sapecin B, an antibacterial protein of Sarcophaga peregrina (flesh fly). Biochem J 298(Pt 3):623–628PubMedCentralPubMedGoogle Scholar
  212. Yevtushenko DP, Romero R, Forward BS, Hancock RE, Kay WW, Misra S (2005) Pathogen-induced expression of a cecropin A-melittin antimicrobial peptide gene confers antifungal resistance in transgenic tobacco. J Exp Bot 56:1685–1695PubMedGoogle Scholar
  213. Yi HY, Deng XJ, Yang WY, Zhou CZ, Cao Y, Yu XQ (2013) Gloverins of the silkworm Bombyx mori: structural and binding properties and activities. Insect Biochem Mol Biol 43:612–625PubMedGoogle Scholar
  214. Yoe SM, Kang CS, Han SS, Bang IS (2006) Characterization and cDNA cloning of hinnavin II, a cecropin family antibacterial peptide from the cabbage butterfly, Artogeia rapae. Comp Biochem Physiol B Biochem Mol Biol 144:199–205PubMedGoogle Scholar
  215. Zhao L, Lu W (2014) Defensins in innate immunity. Curr Opin Hematol 21:37–42PubMedGoogle Scholar
  216. Zhong X, Xu XX, Yi HY, Lin C, Yu XQ (2012) A Toll-Spatzle pathway in the tobacco hornworm, Manduca sexta. Insect Biochem Mol Biol 42:514–524PubMedCentralPubMedGoogle Scholar
  217. Zhu Y, Johnson TJ, Myers AA, Kanost MR (2003) Identification by subtractive suppression hybridization of bacteria-induced genes expressed in Manduca sexta fat body. Insect Biochem Mol Biol 33:541–559PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Hui-Yu Yi
    • 1
    • 2
  • Munmun Chowdhury
    • 2
  • Ya-Dong Huang
    • 1
  • Xiao-Qiang Yu
    • 2
    Email author
  1. 1.College of Life Science and TechnologyJinan UniversityGuangzhouChina
  2. 2.Division of Molecular Biology and Biochemistry, School of Biological SciencesUniversity of Missouri-Kansas CityKansas CityUSA

Personalised recommendations