Applied Microbiology and Biotechnology

, Volume 98, Issue 13, pp 5859–5870 | Cite as

Application of metabolic engineering for the biotechnological production of l-valine

  • Marco OldigesEmail author
  • Bernhard J. Eikmanns
  • Bastian Blombach


The branched chain amino acid l-valine is an essential nutrient for higher organisms, such as animals and humans. Besides the pharmaceutical application in parenteral nutrition and as synthon for the chemical synthesis of e.g. herbicides or anti-viral drugs, l-valine is now emerging into the feed market, and significant increase of sales and world production is expected. In accordance, well-known microbial production bacteria, such as Escherichia coli and Corynebacterium glutamicum strains, have recently been metabolically engineered for efficient l-valine production under aerobic or anaerobic conditions, and the respective cultivation and production conditions have been optimized. This review summarizes the state of the art in l-valine biosynthesis and its regulation in E. coli and C. glutamicum with respect to optimal metabolic network for microbial l-valine production, genetic strain engineering and bioprocess development for l-valine production, and finally, it will shed light on emerging technologies that have the potential to accelerate strain and bioprocess engineering in the near future.


l-valine biosynthesis/production Metabolic engineering Bioprocess engineering Branched chain amino acid Regulation Escherichia coli Corynebacterium glutamicum 



The work on and with l-valine-producing strains in the authors labs was partly supported by governmental german funding organisations: the Fachagentur Nachwachsende Rohstoffe (FNR) of the Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (BMELV), by the Bundesministerium für Bildung und Forschung (BMBF) and by the Deutsche Forschungsgemeinschaft (DFG).


  1. Barea R, Brossard L, Le Floc’h N, Primot Y, Melchior D, van Milgen J (2009) The standardized ileal digestible valine-to-lysine requirement ratio is at least seventy percent in postweaned piglets. J Anim Sci 87(3):935–947. doi: 10.2527/jas.2008-1006 PubMedCrossRefGoogle Scholar
  2. Bartek T, Makus P, Klein B, Lang S, Oldiges M (2008) Influence of l-isoleucine and pantothenate auxotrophy for l-valine formation in Corynebacterium glutamicum revisited by metabolome analyses. Bioprocess Biosyst Eng 31(3):217–225. doi: 10.1007/s00449-008-0202-z PubMedCrossRefGoogle Scholar
  3. Bartek T, Blombach B, Zonnchen E, Makus P, Lang S, Eikmanns BJ, Oldiges M (2010a) Importance of NADPH supply for improved l-valine formation in Corynebacterium glutamicum. Biotechnol Prog 26(2):361–371. doi: 10.1002/btpr.345 PubMedGoogle Scholar
  4. Bartek T, Rudolf C, Kerssen U, Klein B, Blombach B, Lang S, Eikmanns BJ, Oldiges M (2010b) Studies on substrate utilisation in l-valine-producing Corynebacterium glutamicum strains deficient in pyruvate dehydrogenase complex. Bioprocess Biosyst Eng 33(7):873–883. doi: 10.1007/s00449-010-0410-1 PubMedCrossRefGoogle Scholar
  5. Bartek T, Blombach B, Lang S, Eikmanns BJ, Wiechert W, Oldiges M, Noh K, Noack S (2011) Comparative C-13 metabolic flux analysis of pyruvate dehydrogenase complex-deficient, l-valine-producing Corynebacterium glutamicum. Appl Environ Microbiol 77(18):6644–6652. doi: 10.1128/aem.00575-11 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Binder S, Schendzielorz G, Stabler N, Krumbach K, Hoffmann K, Bott M, Eggeling L (2012) A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome Biol 13 (5). doi: 10.1186/gb-2012-13-5-r40
  7. Binder S, Siedler S, Marienhagen J, Bott M, Eggeling L (2013) Recombineering in Corynebacterium glutamicum combined with optical nanosensors: a general strategy for fast producer strain generation. Nucleic Acids Res 41(12):6360–6369. doi: 10.1093/nar/gkt312 PubMedCentralPubMedCrossRefGoogle Scholar
  8. Blombach B, Eikmanns BJ (2011) Current knowledge on isobutanol production with Escherichia coli, Bacillus subtilis and Corynebacterium glutamicum. Bioeng Bugs 2(6):346–350. doi: 10.4161/bbug.2.6.17845 PubMedCentralPubMedCrossRefGoogle Scholar
  9. Blombach B, Schreiner ME, Holatko J, Bartek T, Oldiges M, Eikmanns BJ (2007) (l)-valine production with pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum. Appl Environ Microbiol 73(7):2079–2084. doi: 10.1128/aem.02826-06 PubMedCentralPubMedCrossRefGoogle Scholar
  10. Blombach B, Schreiner ME, Bartek T, Oldiges M, Eikmanns BJ (2008) Corynebacterium glutamicum tailored for high-yield L-VALINE production. Appl Microbiol Biotechnol 79(3):471–479. doi: 10.1007/s00253-008-1444-z PubMedCrossRefGoogle Scholar
  11. Blombach B, Arndt A, Auchter M, Eikmanns BJ (2009a) l-valine production during growth of pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum in the presence of ethanol or by inactivation of the transcriptional regulator SugR. Appl Environ Microbiol 75(4):1197–1200. doi: 10.1128/aem.02351-08 PubMedCentralPubMedCrossRefGoogle Scholar
  12. Blombach B, Hans S, Bathe B, Eikmanns BJ (2009b) Acetohydroxyacid synthase, a novel target for improvement of l-lysine production by Corynebacterium glutamicum. Appl Environ Microbiol 75(2):419–427. doi: 10.1128/aem.01844-08 PubMedCentralPubMedCrossRefGoogle Scholar
  13. Blombach B, Riester T, Wieschalka S, Ziert C, Youn JW, Wendisch VF, Eikmanns BJ (2011) Corynebacterium glutamicum tailored for efficient isobutanol production. Appl Environ Microbiol 77(10):3300–3310. doi: 10.1128/aem.02972-10 PubMedCentralPubMedCrossRefGoogle Scholar
  14. Buchholz J, Schwentner A, Brunnenkan B, Gabris C, Grimm S, Gerstmeir R, Takors R, Eikmanns BJ, Blombach B (2013) Platform engineering of Corynebacterium glutamicum with reduced pyruvate dehydrogenase complex activity for improved production of l-lysine, l-valine, and 2-ketoisovalerate. Appl Environ Microbiol 79(18):5566–5575. doi: 10.1128/aem.01741-13 PubMedCentralPubMedCrossRefGoogle Scholar
  15. Burkovski A (2003) I do it my way: regulation of ammonium uptake and ammonium assimilation in Corynebacterium glutamicum. Arch Microbiol 179(2):83–88. doi: 10.1007/s00203-002-0505-4 PubMedGoogle Scholar
  16. Corzo A, Kidd MT, Dozier WA, Vieira SL (2007) Marginality and needs of dietary valine for broilers fed certain all-vegetable diets. J Appl Poult Res 16(4):546–554. doi: 10.3382/japr.2007-00025 CrossRefGoogle Scholar
  17. Dozier WA, Corzo A, Kidd MT, Tillman PB, Branton SL (2011) Determination of the fourth and fifth limiting amino acids in broilers fed on diets containing maize, soybean meal and poultry by-product meal from 28 to 42 d of age. Br Poult Sci 52(2):238–244. doi: 10.1080/00071668.2011.561282 PubMedCrossRefGoogle Scholar
  18. Eggeling I, Cordes C, Eggeling L, Sahm H (1987) Regulation of acetohydroxy acid synthase in Corynebacterium glutamicum during fermentation of alpha-ketobutyrate to l-isoleucine. Appl Microbiol Biotechnol 25(4):346–351CrossRefGoogle Scholar
  19. Eggeling L, Pfefferle W, Sahm H (2001) Amino acids. In: Ratledge C, Kristiansen B (eds) Basic biotechnology. Cambridge University Press, Cambridge, pp 281–303Google Scholar
  20. Elisakova V, Patek M, Holatko J, Nesvera JN, Leyval D, Goergen JL, Delaunay S (2005) Feedback-resistant acetohydroxy acid synthase increases valine production in Corynebacterium glutamicum. Appl Environ Microbiol 71(1):207–213. doi: 10.1128/aem.71.1.207-213.2005 PubMedCentralPubMedCrossRefGoogle Scholar
  21. Fischer E (1906) Division of alpha-amino-isovalerianic acid in the optically active components. Ber Dtsch Chem Ges 39:2320–2328CrossRefGoogle Scholar
  22. Fritzsch FSO, Rosenthal K, Kampert A, Howitz S, Dusny C, Blank LM, Schmid A (2013) Picoliter nDEP traps enable time-resolved contactless single bacterial cell analysis in controlled microenvironments. Lab Chip 13(3):397–408. doi: 10.1039/c2lc41092c PubMedCrossRefGoogle Scholar
  23. Funke M, Buchenauer A, Schnakenberg U, Mokwa W, Diederichs S, Mertens A, Muller C, Kensy F, Buchs J (2010) Microfluidic BioLector-microfluidic bioprocess control in microtiter plates. Biotechnol Bioeng 107(3):497–505. doi: 10.1002/bit.22825 PubMedCrossRefGoogle Scholar
  24. Gebhardt G, Hortsch R, Kaufmann K, Arnold M, Weuster-Botz D (2011) A new microfluidic concept for parallel operated milliliter-scale stirred tank bioreactors. Biotechnol Prog 27(3):684–690. doi: 10.1002/btpr.570 PubMedCrossRefGoogle Scholar
  25. Grunberger A, Paczia N, Probst C, Schendzielorz G, Eggeling L, Noack S, Wiechert W, Kohlheyer D (2012) A disposable picolitre bioreactor for cultivation and investigation of industrially relevant bacteria on the single cell level. Lab Chip 12(11):2060–2068. doi: 10.1039/c2lc40156h PubMedCrossRefGoogle Scholar
  26. Hasegawa S, Uematsu K, Natsuma Y, Suda M, Hiraga K, Jojima T, Inui M, Yukawa H (2012) Improvement of the redox balance increases l-valine production by Corynebacterium glutamicum under oxygen deprivation conditions. Appl Environ Microbiol 78(3):865–875. doi: 10.1128/aem.07056-11 PubMedCentralPubMedCrossRefGoogle Scholar
  27. Hasegawa S, Suda M, Uematsu K, Natsuma Y, Hiraga K, Jojima T, Inui M, Yukawa H (2013) Engineering of Corynebacterium glutamicum for high-yield l-valine production under oxygen deprivation conditions. Appl Environ Microbiol 79(4):1250–1257. doi: 10.1128/aem.02806-12 PubMedCentralPubMedCrossRefGoogle Scholar
  28. Holatko J, Elisakova V, Prouza M, Sobotka M, Nesvera J, Patek M (2009) Metabolic engineering of the l-valine biosynthesis pathway in Corynebacterium glutamicum using promoter activity modulation. J Biotechnol 139(3):203–210. doi: 10.1016/j.jbiotec.2008.12.005 PubMedCrossRefGoogle Scholar
  29. Hou XH, Chen XD, Zhang Y, Qian H, Zhang WG (2012a) l-valine production with minimization of by-products’ synthesis in Corynebacterium glutamicum and Brevibacterium flavum. Amino Acids 43(6):2301–2311. doi: 10.1007/s00726-012-1308-9 PubMedCrossRefGoogle Scholar
  30. Hou XH, Ge XY, Wu D, Qian H, Zhang WG (2012b) Improvement of l-valine production at high temperature in Brevibacterium flavum by overexpressing ilvEBN(r)C genes. J Ind Microbiol Biotechnol 39(1):63–72. doi: 10.1007/s10295-011-1000-1 PubMedCrossRefGoogle Scholar
  31. Iwasaki K (2005) Twenty-second amino salon lecture for the media on beautiful skin and amino acids.
  32. Jang YS, Kim B, Shin JH, Choi YJ, Choi S, Song CW, Lee J, Park HG, Lee SY (2012) Bio-based production of C2-C6 platform chemicals. Biotechnol Bioeng 109(10):2437–2459. doi: 10.1002/bit.24599 PubMedCrossRefGoogle Scholar
  33. Kabus A, Georgi T, Wendisch VF, Bott M (2007) Expression of the Escherichia coli pntAB genes encoding a membrane-bound transhydrogenase in Corynebacterium glutamicum improves l-lysine formation. Appl Microbiol Biotechnol 75(1):47–53. doi: 10.1007/s00253-006-0804-9 PubMedCrossRefGoogle Scholar
  34. Kaplun A, Vyazmensky M, Zherdev Y, Belenky I, Slutzker A, Mendel S, Barak Z, Chipman DM, Shaanan B (2006) Structure of the regulatory subunit of acetohydroxyacid synthase isozyme III from Escherichia coli. J Mol Biol 357(3):951–963. doi: 10.1016/j.jmb.2005.12.077 PubMedCrossRefGoogle Scholar
  35. Karau A, Grayson I (2014) Amino acids in human and animal nutrition. In. Advances in Biochemical Engineering/Biotechnology. Springer Berlin Heidelberg, pp 1–40 doi: 10.1007/10_2014_269 (Epub ahead of print)
  36. Kawaguchi T, Izumi N, Charlton MR, Sata M (2011) Branched-chain amino acids as pharmacological nutrients in chronic liver disease. Hepatology 54(3):1063–1070. doi: 10.1002/hep.24412 PubMedCrossRefGoogle Scholar
  37. Keilhauer C, Eggeling L, Sahm H (1993) Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon. J Bacteriol 175(17):5595–5603PubMedCentralPubMedGoogle Scholar
  38. Kennerknecht N, Sahm H, Yen MR, Patek M, Saier MH, Eggeling L (2002) Export of l-isoleucine from Corynebacterium glutamicum: a two-gene-encoded member of a new translocator family. J Bacteriol 184(14):3947–3956. doi: 10.1128/jb.184.14.3947-3956.2002 PubMedCentralPubMedCrossRefGoogle Scholar
  39. Krause FS, Blombach B, Eikmanns BJ (2010a) Metabolic engineering of Corynebacterium glutamicum for 2-Ketoisovalerate production. Appl Environ Microbiol 76(24):8053–8061. doi: 10.1128/aem.01710-10 PubMedCentralPubMedCrossRefGoogle Scholar
  40. Krause FS, Henrich A, Blombach B, Kramer R, Eikmanns BJ, Seibold GM (2010b) Increased glucose utilization in Corynebacterium glutamicum by use of Maltose, and its application for the improvement of l-valine productivity. Appl Environ Microbiol 76(1):370–374. doi: 10.1128/aem.01553-09 PubMedCentralPubMedCrossRefGoogle Scholar
  41. Lange C, Mustafi N, Frunzke J, Kennerknecht N, Wessel M, Bott M, Wendisch VF (2012) Lrp of Corynebacterium glutamicum controls expression of the brnFE operon encoding the export system for l-methionine and branched-chain amino acids. J Biotechnol 158(4):231–241. doi: 10.1016/j.jbiotec.2011.06.003 PubMedCrossRefGoogle Scholar
  42. Lawther RP, Wek RC, Lopes JM, Pereira R, Taillon BE, Hatfield GW (1987) The complete nucleotide sequence of the ilvGMEDA operon of Escherichia coli K-12. Nucleic Acids Res 15(5):2137–2155. doi: 10.1093/nar/15.5.2137 PubMedCentralPubMedCrossRefGoogle Scholar
  43. Lee PJ, Hung PJ, Rao VM, Lee LP (2006) Nanoliter scale microbioreactor array for quantitative cell biology. Biotechnol Bioeng 94(1):5–14. doi: 10.1002/bit.20745 PubMedCrossRefGoogle Scholar
  44. Leuchtenberger W, Huthmacher K, Drauz K (2005) Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol 69(1):1–8. doi: 10.1007/s00253-005-0155-y PubMedCrossRefGoogle Scholar
  45. Leyval D, Uy D, Delaunay S, Goergen JL, Engasser JM (2003) Characterisation of the enzyme activities involved in the valine biosynthetic pathway in a valine-producing strain of Corynebacterium glutamicum. J Biotechnol 104(1–3):241–252. doi: 10.1016/s0168-1656(03)00162-7 PubMedCrossRefGoogle Scholar
  46. Li H, Cann AF, Liao JC (2010) Biofuels: biomolecular engineering fundamentals and advances. In: Prausnitz JM, Doherty MF, Segalman MA (eds) Annu Rev Chem Biomol, vol 1. Ann Rev Chem Biomol Eng. pp 19–36. doi: 10.1146/annurev-chembioeng-073009-100938
  47. Liebl W, Ehrmann M, Ludwig W, Schleifer KH (1991) Transfer of Brevibacterium divaricatum DSM 20297, “Brevibacterium flavum” DSM 20411, “Brevibacterium lactofermentum” DSM20412 and DSM 1412, and Corynebacterium lilium DSM 20137 to Corynebacterium glutamicum and their distinction by rRNA gene restriction patterns. Int J Syst Bacteriol 41(2):255–260PubMedCrossRefGoogle Scholar
  48. Magnus JB, Hollwedel D, Oldiges M, Takors R (2006) Monitoring and modeling of the reaction dynamics in the valine/leucine synthesis pathway in Corynebacterium glutamicum. Biotechnol Prog 22(4):1071–1083. doi: 10.1021/bp060072f PubMedCrossRefGoogle Scholar
  49. Magnus JB, Oldiges M, Takors R (2009) The identification of enzyme targets for the optimization of a valine producing Corynebacterium glutamicum strain using a kinetic model. Biotechnol Prog 25(3):754–762. doi: 10.1002/btpr.184 PubMedCrossRefGoogle Scholar
  50. Marienhagen J, Eggeling L (2008) Metabolic function of Corynebacterium glutamicum aminotransferases AlaT and AvtA and impact on l-valine production. Appl Environ Microbiol 74(24):7457–7462. doi: 10.1128/aem.01025-08 PubMedCentralPubMedCrossRefGoogle Scholar
  51. Marienhagen J, Kennerknecht N, Sahm H, Eggeling L (2005) Functional analysis of all aminotransferase proteins inferred from the genome sequence of Corynebacterium glutamicum. J Bacteriol 187(22):7639–7646. doi: 10.1128/jb.187.22.7639-7646.2005 PubMedCentralPubMedCrossRefGoogle Scholar
  52. Morbach S, Junger C, Sahm H, Eggeling L (2000) Attenuation control of ilvBNC in Corynebacterium glutamicum: evidence of leader peptide formation without the presence of a ribosome binding site. J Biosci Bioeng 90(5):501–507. doi: 10.1016/s1389-1723(01)80030-x PubMedGoogle Scholar
  53. Mustafi N, Grunberger A, Kohlheyer D, Bott M, Frunzke J (2012) The development and application of a single-cell biosensor for the detection of l-methionine and branched-chain amino acids. Metab Eng 14(4):449–457. doi: 10.1016/j.ymben.2012.02.002 PubMedCrossRefGoogle Scholar
  54. Mustafi N, Grunberger A, Mahr R, Helfrich S, Noh K, Blombach B, Kohlheyer D, Frunzke J (2014) Application of a genetically encoded biosensor for live cell imaging of l-valine production in pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum strains. PLoS One 9 (1). doi: 10.1371/journal.pone.0085731
  55. Parekh S, Vinci VA, Strobel RJ (2000) Improvement of microbial strains and fermentation processes. Appl Microbiol Biotechnol 54:287–301PubMedCrossRefGoogle Scholar
  56. Park JH, Lee SY (2010) Fermentative production of branched chain amino acids: a focus on metabolic engineering. Appl Microbiol Biotechnol 85(3):491–506. doi: 10.1007/s00253-009-2307-y PubMedCrossRefGoogle Scholar
  57. Park JH, Lee KH, Kim TY, Lee SY (2007) Metabolic engineering of Escherichia coli for the production of l-valine based on transcriptome analysis and in silico gene knockout simulation. Proc Natl Acad Sci U S A 104(19):7797–7802. doi: 10.1073/pnas.0702609104 PubMedCentralPubMedCrossRefGoogle Scholar
  58. Park JH, Jang YS, Lee JW, Lee SY (2011a) Escherichia coli W as a new platform strain for the enhanced production of l-valine by systems metabolic engineering. Biotechnol Bioeng 108(5):1140–1147. doi: 10.1002/bit.23044 PubMedCrossRefGoogle Scholar
  59. Park JH, Kim TY, Lee KH, Lee SY (2011b) Fed-batch culture of Escherichia coli for l-valine production based on in silico flux response analysis. Biotechnol Bioeng 108(4):934–946. doi: 10.1002/bit.22995 PubMedCrossRefGoogle Scholar
  60. Pasupuleti V, Holmes C, Demain A (2010) Applications of protein hydrolysates in biotechnology. In: Pasupuleti VK, Demain AL (eds) Protein hydrolysates in biotechnology. Springer, Netherlands, pp 1–9. doi: 10.1007/978-1-4020-6674-0_1 CrossRefGoogle Scholar
  61. Pátek M (2007) Branched-chain amino acids. In: Wendisch V (ed) Amino acid biosynthesis—pathways, regulation and metabolic engineering, vol 5. Microbiology monographs. Springer Berlin, Heidelberg, pp 129–162CrossRefGoogle Scholar
  62. Plimmer RHA (1917) The chemical constitution of the proteins. In: Plimmer RHA, Hopkins FG (eds) Monographs on biochemistry, vol 1. Longmans Green and Co., LondonGoogle Scholar
  63. Radmacher E, Vaitsikova A, Burger U, Krumbach K, Sahm H, Eggeling L (2002) Linking central metabolism with increased pathway flux: l-valine accumulation by Corynebacterium glutamicum. Appl Environ Microbiol 68(5):2246–2250. doi: 10.1128/aem.68.5.2246-2250.2002 PubMedCentralPubMedCrossRefGoogle Scholar
  64. Rohe P, Venkanna D, Kleine B, Freudl R, Oldiges M (2012) An automated workflow for enhancing microbial bioprocess optimization on a novel microbioreactor platform. Microb Cell Fact 11. doi: 10.1186/1475-2859-11-144
  65. Roux ML, Donsbough AL, Waguespack AM, Powell S, Bidner TD, Payne RL, Southern LL (2011) Maximizing the use of supplemental amino acids in corn-soybean meal diets for 20-to 45-kilogram pigs. J Anim Sci 89(8):2415–2424. doi: 10.2527/jas.2010-3756 PubMedCrossRefGoogle Scholar
  66. Ruklisha M, Paegle L, Denina I (2007) l-valine biosynthesis during batch and fed-batch cultivations of Corynebacterium glutamicum: relationship between changes in bacterial growth rate and intracellular metabolism. Process Biochem 42(4):634–640. doi: 10.1016/j.procbio.2006.11.008 CrossRefGoogle Scholar
  67. Sahm H, Eggeling L (1999) d-pantothenate synthesis in Corynebacterium glutamicum and use of panBC and genes encoding l-valine synthesis for d-pantothenate overproduction. Appl Environ Microbiol 65(5):1973–1979PubMedCentralPubMedGoogle Scholar
  68. Sandeaux J, Sandeaux R, Gavach C, Grib H, Sadat T, Belhocine D, Mameri N (1998) Extraction of amino acids from protein hydrolysates by electrodialysis. J Chem Technol Biotechnol 71(3):267–273CrossRefGoogle Scholar
  69. Schallmey M, Frunzke J, Eggeling L, Marienhagen J (2014) Looking for the pick of the bunch: high-throughput screening of producing microorganisms with biosensors. Curr Opin Biotechnol 26(0):148–154. doi: 10.1016/j.copbio.2014.01.005 PubMedCrossRefGoogle Scholar
  70. Schreiner ME, Fiur D, Holatko J, Patek M, Eikmanns BJ (2005) E1 enzyme of the pyruvate dehydrogenase complex in Corynebacterium glutamicum: molecular analysis of the gene and phylogenetic aspects. J Bacteriol 187(17):6005–6018. doi: 10.1128/jb.187.17.6005-6018.2005 PubMedCentralPubMedCrossRefGoogle Scholar
  71. Stoner EJ, Cooper AJ, Dickman DA, Kolaczkowski L, Lallaman JE, Liu JH, Oliver-Shaffer PA, Patel KM, Paterson JB, Plata DJ, Riley DA, Sham HL, Stengel PJ, Tien JHJ (2000) Synthesis of HIV protease inhibitor ABT-378 (lopinavir). Org Process Res Dev 4(4):264–269. doi: 10.1021/op990202j CrossRefGoogle Scholar
  72. Tauch A, Hermann T, Burkovski A, Kramer R, Puhler A, Kalinowski J (1998) Isoleucine uptake in Corynebacterium glutamicum ATCC 13032 is directed by the brnQ gene product. Arch Microbiol 169(4):303–312. doi: 10.1007/s002030050576 PubMedCrossRefGoogle Scholar
  73. Tesch M, de Graaf AA, Sahm H (1999) In vivo fluxes in the ammonium-assimilatory pathways in Corynebacterium glutamicum studied by 15N nuclear magnetic resonance. Appl Environ Microbiol 65(3):1099–1109PubMedCentralPubMedGoogle Scholar
  74. Tracy BP, Gaida SM, Papoutsakis ET (2010) Flow cytometry for bacteria: enabling metabolic engineering, synthetic biology and the elucidation of complex phenotypes. Curr Opin Biotechnol 21(1):85–99. doi: 10.1016/j.copbio.2010.02.008 PubMedCrossRefGoogle Scholar
  75. Trotschel C, Deutenberg D, Bathe B, Burkovski A, Kramer R (2005) Characterization of methionine export in Corynebacterium glutamicum. J Bacteriol 187(11):3786–3794. doi: 10.1128/jb.187.11.3786-3794.2005 PubMedCentralPubMedCrossRefGoogle Scholar
  76. Umbarger HE (1996) Biosynthesis of the branched-chain amino acids. In: Neidhardt FC, Curtis R III, Ingraham JL et al (eds) Escherichia coli and Salmonella: cellular and molecular biology, 2nd edn. ASM Press, Washington, D.C, pp 442–457Google Scholar
  77. Vasicova P, Patek M, Nesvera J, Sahm H, Eikmanns BJ (1999) Analysis of the Corynebacterium glutamicum dapA promoter. J Bacteriol 181(19):6188–6191PubMedCentralPubMedGoogle Scholar
  78. Wada M, Hijikata N, Aoki R, Takesue N, Yokota A (2008) Enhanced valine production in Corynebacterium glutamicum with defective H + −ATPase and C-terminal truncated acetohydroxyacid synthase. Biosci Biotechnol Biochem 72(11):2959–2965. doi: 10.1271/bbb.80434 PubMedCrossRefGoogle Scholar
  79. Wek RC, Hatfield GW (1988) Transcriptional activation at adjacent operators in the divergent overlapping ilvY and ilvC promoters of Escherichia coli. J Mol Biol 203(3):643–663. doi: 10.1016/0022-2836(88)90199-4 PubMedCrossRefGoogle Scholar
  80. Wieschalka S, Blombach B, Bott M, Eikmanns BJ (2012) Bio-based production of organic acids with Corynebacterium glutamicum. Microb Biotechnol 6(2):87–102. doi: 10.1111/1751-7915.12013 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Marco Oldiges
    • 1
    Email author
  • Bernhard J. Eikmanns
    • 2
  • Bastian Blombach
    • 3
  1. 1.Institute of Bio- and Geosciences, IBG-1: BiotechnologyForschungszentrum JülichJülichGermany
  2. 2.Institute of Microbiology and BiotechnologyUniversity of UlmUlmGermany
  3. 3.Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany

Personalised recommendations