Advertisement

Applied Microbiology and Biotechnology

, Volume 98, Issue 12, pp 5387–5396 | Cite as

Atmospheric and room temperature plasma (ARTP) as a new powerful mutagenesis tool

  • Xue Zhang
  • Xiao-Fei Zhang
  • He-Ping Li
  • Li-Yan Wang
  • Chong Zhang
  • Xin-Hui Xing
  • Cheng-Yu Bao
Mini-Review

Abstract

Developing rapid and diverse microbial mutation tool is of importance to strain modification. In this review, a new mutagenesis method for microbial mutation breeding using the radio-frequency atmospheric-pressure glow discharge (RF APGD) plasma jets is summarized. Based on the experimental study, the helium RF APGD plasma jet has been found to be able to change the DNA sequences significantly, indicating that the RF APGD plasma jet would be a powerful tool for the microbial mutagenesis with its outstanding features, such as the low and controllable gas temperatures, abundant chemically reactive species, rapid mutation, high operation flexibility, etc. Then, with the RF APGD plasma generator as the core component, a mutation machine named as atmospheric and room temperature plasma (ARTP) mutation system has been developed and successfully employed for the mutation breeding of more than 40 kinds of microorganisms including bacteria, fungi, and microalgae. Finally, the prospect of the ARTP mutagenesis is discussed.

Keywords

Microbial breeding Cold atmospheric plasma Mutagenesis Radio-frequency glow discharge Atmospheric and room temperature plasma 

Notes

Acknowledgments

This work has been supported by the Tsinghua University Initiative Scientific Research Program (No. 2011Z01019), National Natural Science Foundation of China (Nos. 10972119 and 61104204), and JST CREST of Japan.

References

  1. Adamovich IV, Choi I, Jiang N, Kim J-H, Keshav S, Lempert WR, Mintusov E, Nishihara M, Samimy M, Uddi M (2009) Plasma assisted ignition and high-speed flow control: non-thermal and thermal effects. Plasma Sources Sci Technol 18:034018CrossRefGoogle Scholar
  2. Binder S, Schendzielorz G, Stäbler N, Krumbach K, Hoffmann K, Bott M, Eggeling L (2012) A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome Biol 13:R40PubMedCentralPubMedCrossRefGoogle Scholar
  3. Chen HX, Bai FW, Xiu ZL (2010) Oxidative stress induced in Saccharomyces cerevisiae exposed to dielectric barrier discharge plasma in air at atmospheric pressure. IEEE Trans Plasma Sci 38(8):1885–1891CrossRefGoogle Scholar
  4. Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17:1195–1214PubMedCrossRefGoogle Scholar
  5. Dong XY, Xiu ZL, Li S, Hou YM, Zhang DJ, Ren CS (2010) Dielectric barrier discharge plasma as a novel approach for improving 1,3-propanediol production in Klebsiella pneumoniae. Biotechnol Lett 32(9):1245–1250PubMedCrossRefGoogle Scholar
  6. Drake JW, Charlesworth B, Charlesworth D, Crow JF (1998) Rates of spontaneous mutation. Genetics 148:1667–1686PubMedCentralPubMedGoogle Scholar
  7. Fang MY, Jin LH, Zhang C, Tan YY, Jiang PX, Ge N, Li HP, Xing XH (2013) Rapid mutation of Spirulina platensis by a new mutagenesis system of atmospheric and room temperature plasmas (ARTP) and generation of a mutant library with diverse phenotypes. PLoS ONE 8(10):e77046PubMedCentralPubMedCrossRefGoogle Scholar
  8. Fridman G, Brooks AD, Balasubramanian M, Fridman A, Gutsol A, Vasilets VN, Ayan H, Friedman G (2007) Comparison of direct and indirect effects of non-thermal atmospheric-pressure plasma on bacteria. Plasma Process Polym 4:370–375CrossRefGoogle Scholar
  9. Gaunt LF, Beggs CB, Georghiou GE (2006) Bactericidal action of the reactive species produced by gas-discharge nonthermal plasma at atmospheric pressure: a review. IEEE Trans Plasma Sci 34(4):1257–1269CrossRefGoogle Scholar
  10. Guo T, Tang Y, Xi YL, He AY, Sun BJ, Wu H, Liang DF, Jiang M, Ouyang PK (2011) Clostridium beijerinckii mutant obtained by atmospheric pressure glow discharge producing high proportions of butanol and solvent yields. Biotechnol Lett 33:2379–2383PubMedCrossRefGoogle Scholar
  11. Hua XF, Wang J, Wu ZJ, Zhang HX, Li HP, Xing XH, Liu Z (2010) A salt tolerant Enterobacter cloacae mutant for bioaugmentation of petroleum- and salt-contaminated soil. Biochem Eng J 49:201–206CrossRefGoogle Scholar
  12. Jayaraman B, Shyy W (2008) Modeling of dielectric barrier discharge-induced fluid dynamics and heat transfer. Prog Aeosp Sci 44(3):139–191CrossRefGoogle Scholar
  13. Jiang M, Wan Q, Liu R, Liang L, Chen X, Wu M, Zhang H, Chen K, Ma J, Wei P, Ouyang PK (2014) Succinic acid production from corn stalk hydrolysate in an E. coli mutant generated by atmospheric and room-temperature plasmas and metabolic evolution strategies. J Ind Microbiol Biotechnol 41(1):115–123PubMedCrossRefGoogle Scholar
  14. Jin LH, Fang MY, Zhang C, Jiang PX, Ge N, Li HP, Xing XH, Bao CY (2011) Operating conditions for the rapid mutation of the oleaginous yeast by atmospheric and room temperature plasmas and the characteristics of the mutants. Chin J Biotech 27(3):461–467 (In Chinese)Google Scholar
  15. Kodym A, Afza R (2003) Physical and chemical mutagenesis. Methods Mol Biol Plant Func Genom 236:189–203Google Scholar
  16. Kogelschatz U (2004) Atmospheric-pressure plasma technology. Plasma Phys Control Fusion 46:B63–B75CrossRefGoogle Scholar
  17. Kong MG, Kroesen G, Morfill G, Nosenko T, Shimizu T, van Dijk J, Zimmermann JL (2009) Plasma medicine: an introductory review. New J Phys 11:115012CrossRefGoogle Scholar
  18. Lanfaloni L, Trinei M, Russo M, Gualerzi CO (1991) Mutagenesis of the cyanobacterium Spirulina platensis by UV and nitrosoguanidine treatment. FEMS Microbiol Lett 83:85–90CrossRefGoogle Scholar
  19. Laroussi M (2002) Nonthermal decontamination of biological media by atmospheric-pressure plasmas: review, analysis, and prospects. IEEE Trans Plasma Sci 30(4):1409–1415CrossRefGoogle Scholar
  20. Laroussi M (2005) Low temperature plasma-based sterilization: overview and state-of-the-art. Plasma Process Polym 2:391–400CrossRefGoogle Scholar
  21. Laroussi M, Leipold F (2004) Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. Int J Mass Spectrom 233:81–86CrossRefGoogle Scholar
  22. Laroussi M, Richardson JP, Dobbs FC (2002) Effects of nonequilibrium atmospheric pressure plasmas on the heterotrophic pathways of bacteria and on their cell morphology. Appl Phys Lett 81(4):772–774CrossRefGoogle Scholar
  23. Laroussi M, Mendis DA, Rosenberg M (2003) Plasma interaction with microbes. New J Phys 5:41.1–41.10CrossRefGoogle Scholar
  24. Lee H, Popodi E, Tang H, Foster PL (2012) Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing. Proc Natl Acad Sci 109(41):E2774–E2783PubMedCentralPubMedCrossRefGoogle Scholar
  25. Li HP, Sun WT, Wang HB, Li G, Bao CY (2007) Electrical features of radio-frequency, atmospheric-pressure, bare-metallic-electrode glow discharges. Plasma Chem Plasma Process 27(5):529–545CrossRefGoogle Scholar
  26. Li G, Li HP, Sun WT, Wang S, Tian Z, Bao CY (2008a) Discharge features of radio-frequency, atmospheric-pressure cold plasmas under an intensified local electric field. J Phys D Appl Phys 41:202001CrossRefGoogle Scholar
  27. Li G, Li HP, Wang LY, Wang S, Zhao HX, Sun WT, Xing XH, Bao CY (2008b) Genetic effects of radio-frequency, atmospheric-pressure glow discharges with helium. Appl Phys Lett 92:221504CrossRefGoogle Scholar
  28. Li HP, Li G, Sun WT, Wang S, Bao CY, Wang L, Huang Z, Ding N, Zhao H, Xing XH (2008c) Radio-frequency, atmospheric-pressure glow discharges: Producing methods, characteristics and applications in bio-medical fields. AIP Conf Proc 982:584–591CrossRefGoogle Scholar
  29. Li G, Le PS, Li HP, Bao CY (2010) Effects of the shielding cylinder and substrate on the characteristics of an argon radio-frequency atmospheric glow discharge plasma jet. J Appl Phys 107:103304CrossRefGoogle Scholar
  30. Li HP, Wang LY, Li G, Jin LH, Le PS, Zhao HX, Xing XH, Bao CY (2011) Manipulation of lipase activity by the helium radio-frequency, atmospheric-pressure glow discharge plasma jet. Plasma Process Polym 8:224–229CrossRefGoogle Scholar
  31. Li HP, Wang ZB, Ge N, Le PS, Wu H, Lu Y, Wang LY, Zhang C, Bao CY, Xing XH (2012) Studies on the physical characteristics of the radio-frequency atmospheric-pressure glow discharge plasmas for the genome mutation of Methylosinus trichosporium. IEEE Trans Plasma Sci 40(11):2853–2860CrossRefGoogle Scholar
  32. Liu RM, Liang LY, Ma JF, Ren XY, Jiang M, Chen KQ, Wei P, Ouyang PK (2013) An engineering Escherichia coli mutant with high succinic acid production in the defined medium obtained by the atmospheric and room temperature plasma. Process Biochem 48(11):1603–1609CrossRefGoogle Scholar
  33. Lu Y, Wang LY, Ma K, Li G, Zhang C, Zhao HX, Lai QH, Li HP, Xing XH (2011) Characteristics of hydrogen production of an Enterobacter aerogenes mutant generated by a new atmospheric and room temperature plasma (ARTP). Biochem Eng J 55:17–22CrossRefGoogle Scholar
  34. Moisan M, Barbeau J, Moreau S, Pelletier J, Tabrizian M, Yahia LH (2001) Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. Int J Pharm 226:1–21PubMedCrossRefGoogle Scholar
  35. Park J, Henins I, Herrmann HW, Selwyn GS, Hicks RF (2001) Discharge phenomena of an atmospheric pressure radio-frequency capacitive plasma source. J Appl Phys 89(1):20–28CrossRefGoogle Scholar
  36. Qi F, Kitahara YK, Wang ZT, Zhao XB, Du W, Liu DH (2013) Novel mutant strains of Rhodosporidium toruloides by plasma mutagenesis approach and their tolerance for inhibitors in lignocellulosic hydrolyzate. J Chem Technol Biotechnol. doi: 10.1002/jctb.4180, Published online in Wiley Online LibraryGoogle Scholar
  37. Riccardi G, Sora S, Ciferri O, Bacteriol J (1981) Production of amino acids by analog-resistant mutants of the cyanobacterium Spirulina platensis. J Bacteriol 147:1002–1007PubMedCentralPubMedGoogle Scholar
  38. Riccardi G, De Rossi E, Milano A, De Felice M (1988) Mutants of Spirulina platensis resistant to valine inhibition. FEMS Microbiol Lett 49:19–23CrossRefGoogle Scholar
  39. Schütze A, Jeong JY, Babayan SE, Park J, Selwyn GS, Hicks RF (1998) The atmospheric-pressure plasma jet: a review and comparison to other plasma sources. IEEE Trans Plasma Sci 26(6):1685–1694CrossRefGoogle Scholar
  40. Shi JJ, Deng XT, Hall R, Punnett JD, Kong MG (2003) Three modes in a radio frequency atmospheric pressure glow discharge. J Appl Phys 94(10):6303–6310CrossRefGoogle Scholar
  41. Singh DP, Singh N (1997) Isolation and characterization of a metronidazole tolerant mutant of the cyanobacterium Spirulina platensis exhibiting multiple stress tolerance. World J Microbiol Biotechnol 13:179–183CrossRefGoogle Scholar
  42. Sun WT, Liang TR, Wang HB, Li HP, Bao CY (2007) The back-diffusion effect of air on the discharge characteristics of atmospheric-pressure radio-frequency glow discharges using bare metal electrodes. Plasma Sources Sci Technol 16:290–296CrossRefGoogle Scholar
  43. Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P (2006) Atmospheric pressure plasmas: a review. Spectrochim Acta Pt B 61:2–30CrossRefGoogle Scholar
  44. von Woedtke T, Reuter S, Masur K, Weltmann K-D (2013) Plasmas for medicine. Phys Rep 530(4):291–320CrossRefGoogle Scholar
  45. Wang LY (2009) Studies on the mechanisms and applications of the atmospheric room temperature plasmas acting on the microbes. Ph. D. Thesis, Tsinghua University (In Chinese)Google Scholar
  46. Wang S, Schulz-von Der Gathen V, Döbele HF (2003) Discharge comparison of nonequilibrium atmospheric pressure Ar/O2 and He/O2 plasma jets. Appl Phys Lett 83(16):3272–3274CrossRefGoogle Scholar
  47. Wang LY, Huang ZL, Li G, Zhao HX, Xing XH, Sun WT, Li HP, Gou ZX, Bao CY (2010) Novel mutation breeding method for Streptomyces avermitilis using an atmospheric pressure glow discharge plasma. J Appl Microbiol 108:851–858PubMedCrossRefGoogle Scholar
  48. Wang FQ, Yuan H, Xie H, Song AD (2011) Mutation breeding of butanol high-yielding strain and its fermentation condition optimization. China Brew 230:84–86 (In Chinese)Google Scholar
  49. Wang ZB, Le PS, Ge N, Nie QY, Li HP, Bao CY (2012) One-dimensional modeling on the asymmetric features of a radio-frequency atmospheric helium glow discharge produced using a co-axial-type plasma generator. Plasma Chem Plasma Process 32:859–874CrossRefGoogle Scholar
  50. Xia SQ, Liu L, Zhang DX, Li JH, Du GC, Chen J (2010) Mutation and selection of transglutaminase producing strain by atmospheric pressure glow discharge plasma. Microbiol China 37:1642–1649 (In Chinese)Google Scholar
  51. Xu F, Wang J, Chen S, Qin W, Yu Z, Zhao H, Xing X, Li H (2011) Strain improvement for enhanced production of cellulase in Trichoderma viride. Appl Biochem Microbiol 47:53–58CrossRefGoogle Scholar
  52. Zheng MY, Cai YH, Lu ZQ, Yan JN, Zhang X, Zhang C, Li HP, Xing XH (2013) Screening of high proline yield mutants by rapid mutation using atmospheric and room temperature plasmas. Food Ferment Ind 39(1):36–40 (In Chinese)Google Scholar
  53. Zhou ZW, Huang YF, Yang SZ, Deng MS (2010) Effects of atmospheric pressure plasma on the growth, yield and quality of tomato. J Anhui Ari Sci 38(2):1085–1088 (In Chinese)Google Scholar
  54. Zong H, Zhan Y, Li X, Peng LJ, Feng FQ, Li D (2012) A new mutation breeding method for Streptomyces albulus by an atmospheric and room temperature plasma. Afr J Microbiol Res 6(13):3154–3158Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Chemical EngineeringTsinghua UniversityBeijingPeople’s Republic of China
  2. 2.Department of Engineering PhysicsTsinghua UniversityBeijingPeople’s Republic of China
  3. 3.Beijing Si Qing Yuan Bio-Technology Co., Ltd.BeijingPeople’s Republic of China

Personalised recommendations