Applied Microbiology and Biotechnology

, Volume 98, Issue 12, pp 5677–5684 | Cite as

Affinity purification of recombinant proteins using a novel silica-binding peptide as a fusion tag

  • Mohamed A. A. Abdelhamid
  • Kei Motomura
  • Takeshi Ikeda
  • Takenori Ishida
  • Ryuichi Hirota
  • Akio Kuroda
Methods and protocols


We recently reported that silica is deposited on the coat of Bacillus cereus spores as a layer of nanometer-sized particles (Hirota et al. 2010 J Bacteriol 192: 111-116). Gene disruption analysis revealed that the spore coat protein CotB1 mediates the accumulation of silica (our unpublished results). Here, we report that B. cereus CotB1 (171 amino acids [aa]) and its C-terminal 14-aa region (corresponding to residues 158-171, designated CotB1p) show strong affinity for silica particles, with dissociation constants at pH 8.0 of 2.09 and 1.24 nM, respectively. Using CotB1 and CotB1p as silica-binding tags, we developed a silica-based affinity purification method in which silica particles are used as an adsorbent for CotB1/CotB1p fusion proteins. Small ubiquitin-like modifier (SUMO) technology was employed to release the target proteins from the adsorbed fusion proteins. SUMO-protease-mediated site-specific cleavage at the C-terminus of the fused SUMO sequence released the tagless target proteins into the liquid phase while leaving the tag region still bound to the solid phase. Using the fluorescent protein mCherry as a model, our purification method achieved 85 % recovery, with a purity of 95 % and yields of 0.60 ± 0.06 and 1.13 ± 0.13 mg per 10-mL bacterial culture for the CotB1-SUMO-mCherry and CotB1p-SUMO-mCherry fusions, respectively. CotB1p, a short 14-aa peptide, which demonstrates high affinity for silica, could be a promising fusion tag for both affinity purification and enzyme immobilization on silica supports.


Affinity purification Fusion tag Silica-binding peptide Small ubiquitin-like modifier Bacillus cereus CotB1 

Supplementary material

253_2014_5754_MOESM1_ESM.pdf (169 kb)
ESM 1(PDF 169 kb)


  1. Arnau J, Lauritzen C, Petersen GE, Pedersen J (2006) Current strategies for the use of affinity tags and tag removal for the purification of recombinant proteins. Protein Expr Purif 48:1–13. doi:10.1016/j.pep.2005.12.002 PubMedCrossRefGoogle Scholar
  2. Bolivar JM, Nidetzky B (2012) Positively charged mini-protein Zbasic2 as a highly efficient silica binding module: Opportunities for enzyme immobilization on unmodified silica supports. Langmuir 28:10040–10049. doi:10.1021/la3012348 PubMedCrossRefGoogle Scholar
  3. Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3 PubMedCrossRefGoogle Scholar
  4. Butt TR, Edavettal SC, Hall JP, Mattern MR (2005) SUMO fusion technology for difficult-to-express proteins. Protein Expr Purif 43:1–9. doi:10.1016/j.pep.2005.03.016 PubMedCrossRefGoogle Scholar
  5. Campbell RE, Tour O, Palmer AE, Steinbach PA, Baird GS, Zacharias DA, Tsien RY (2002) A monomeric red fluorescent protein. Proc Natl Acad Sci U S A 99:7877–7882. doi:10.1073/pnas.082243699 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Castelletti L, Verzola B, Gelfi C, Stoyanov A, Righetti PG (2000) Quantitative studies on the adsorption of proteins to the bare silica wall in capillary electrophoresis III: effects of adsorbed surfactants on quenching the interaction. J Chromatogr A 894:281–289. doi:10.1016/S0021-9673(00)00664-6 PubMedCrossRefGoogle Scholar
  7. Choi O, Kim B-C, An J-H, Min K, Kim YH, Um Y, Oh M-K, Sang B-I (2011) A biosensor based on the self-entrapment of glucose oxidase within biomimetic silica nanoparticles induced by a fusion enzyme. Enzyme Microb Technol 49:441–445. doi:10.1016/j.enzmictec.2011.07.005 Google Scholar
  8. Fukuyama M, Yamatogi S, Ding H, Nishida M, Kawamoto C, Amemiya Y, Ikeda T, Noda T, Kawamoto S, Ono K, Kuroda A, Yokoyama S (2010) Selective detection of antigen-antibody reaction using Si ring optical resonators. Jpn J Appl Phys 49:04DL09. doi:10.1143/JJAP.49.04DL09 CrossRefGoogle Scholar
  9. Fukuyama M, Nishida M, Abe Y, Amemiya Y, Ikeda T, Kuroda A, Yokoyama S (2011) Detection of antigen–antibody reaction using Si ring optical resonators functionalized with an immobilized antibody-binding protein. Jpn J Appl Phys 50:04DL07. doi:10.1143/JJAP.50.04DL07 CrossRefGoogle Scholar
  10. Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual, 4th edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  11. Henriques AO, Moran CP Jr (2007) Structure, assembly, and function of the spore surface layers. Annu Rev Microbiol 61:555–588. doi:10.1146/annurev.micro.61.080706.093224 PubMedCrossRefGoogle Scholar
  12. Hirota R, Hata Y, Ikeda T, Ishida T, Kuroda A (2010) The silicon layer supports acid resistance of Bacillus cereus spores. J Bacteriol 192:111–116. doi:10.1128/JB.00954-09 PubMedCentralPubMedCrossRefGoogle Scholar
  13. Hnilova M, Khatayevich D, Carlson A, Oren EE, Gresswell C, Zheng S, Ohuchi F, Sarikaya M, Tamerler C (2012) Single-step fabrication of patterned gold film array by an engineered multi-functional peptide. J Colloid Interface Sci 365:97–102. doi:10.1016/j.jcis.2011.09.006 PubMedCentralPubMedCrossRefGoogle Scholar
  14. Ikeda T, Kuroda A (2011) Why does the silica-binding protein “Si-tag” bind strongly to silica surfaces? Implications of conformational adaptation of the intrinsically disordered polypeptide to solid surfaces. Colloids Surf B: Biointerfaces 86:359–363. doi:10.1016/j.colsurfb.2011.04.020 PubMedCrossRefGoogle Scholar
  15. Ikeda T, Ninomiya K, Hirota R, Kuroda A (2010) Single-step affinity purification of recombinant proteins using the silica-binding Si-tag as a fusion partner. Protein Expr Purif 71:91–95. doi:10.1016/j.pep.2009.12.009 PubMedCrossRefGoogle Scholar
  16. Ikeda T, Motomura K, Agou Y, Ishida T, Hirota R, Kuroda A (2011) The silica-binding Si-tag functions as an affinity tag even under denaturing conditions. Protein Expr Purif 77:173–177. doi:10.1016/j.pep.2011.01.012 PubMedCrossRefGoogle Scholar
  17. Iler RK (1979) The chemistry of silica. Wiley, Inc., New YorkGoogle Scholar
  18. Jenny RJ, Mann KG, Lundblad RL (2003) A critical review of the methods for cleavage of fusion proteins with thrombin and factor Xa. Protein Expr Purif 31:1–11. doi:10.1016/S1046-5928(03)00168-2 PubMedCrossRefGoogle Scholar
  19. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0 PubMedCrossRefGoogle Scholar
  20. Lee C-D, Sun H-C, Hu S-M, Chiu C-F, Homhuan A, Liang S-M, Leng C-H, Wang T-F (2008) An improved SUMO fusion protein system for effective production of native proteins. Protein Sci 17:1241–1248. doi:10.1110/ps.035188.108 PubMedCentralPubMedCrossRefGoogle Scholar
  21. Lichty JJ, Malecki JL, Agnew HD, Michelson-Horowitz DJ, Tan S (2005) Comparison of affinity tags for protein purification. Protein Expr Purif 41:98–105. doi:10.1016/j.pep.2005.01.019 PubMedCrossRefGoogle Scholar
  22. Malakhov MP, Mattern MR, Malakhova OA, Drinker M, Weeks SD, Butt TR (2004) SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins. J Struct Funct Genomics 5:75–86. doi:10.1023/B:JSFG.0000029237.70316.52 Google Scholar
  23. Malhotra A (2009) Tagging for protein expression. Methods Enzymol 463:239–258. doi:10.1016/S0076-6879(09)63016-0 PubMedCrossRefGoogle Scholar
  24. Marblestone JG, Edavettal SC, Lim Y, Lim P, Zuo X, Butt TR (2006) Comparison of SUMO fusion technology with traditional gene fusion systems: enhanced expression and solubility with SUMO. Protein Sci 15:182–189. doi:10.1110/ps.051812706 PubMedCentralPubMedCrossRefGoogle Scholar
  25. Pamirsky IE, Golokhvast KS (2013) Silaffins of diatoms: from applied biotechnology to biomedicine. Mar Drugs 11:3155–3167. doi:10.3390/md11093155 PubMedCentralPubMedCrossRefGoogle Scholar
  26. Panavas T, Sanders C, Butt TR (2009) SUMO fusion technology for enhanced protein production in prokaryotic and eukaryotic expression systems. In: Ulrich HD (ed) Methods in molecular biology: SUMO protocols. Humana Press, New York, pp 303–317CrossRefGoogle Scholar
  27. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. doi:10.1038/nmeth.2089 PubMedCrossRefGoogle Scholar
  28. Shaner NC, Campbell RE, Steinbach PA, Giepmans BNG, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572. doi:10.1038/nbt1037 PubMedCrossRefGoogle Scholar
  29. Taniguchi K, Nomura K, Hata Y, Nishimura T, Asami Y, Kuroda A (2007) The Si-tag for immobilizing proteins on a silica surface. Biotechnol Bioeng 96:1023–1029. doi:10.1002/bit.21208 PubMedCrossRefGoogle Scholar
  30. Terpe K (2003) Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 60:523–533. doi:10.1007/s00253-002-1158-6 PubMedCrossRefGoogle Scholar
  31. Waugh DS (2005) Making the most of affinity tags. Trends Biotechnol 23:316–320. doi:10.1016/j.tibtech.2005.03.012 PubMedCrossRefGoogle Scholar
  32. Waugh DS (2011) An overview of enzymatic reagents for the removal of affinity tags. Protein Expr Purif 80:283–293. doi:10.1016/j.pep.2011.08.005 PubMedCentralPubMedCrossRefGoogle Scholar
  33. Yamatogi S, Amemiya Y, Ikeda T, Kuroda A, Yokoyama S (2009) Si ring optical resonators for integrated on-chip biosensing. Jpn J Appl Phys 48:04C188. doi:10.1143/JJAP.48.04C188 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Mohamed A. A. Abdelhamid
    • 1
  • Kei Motomura
    • 1
  • Takeshi Ikeda
    • 1
  • Takenori Ishida
    • 1
  • Ryuichi Hirota
    • 1
  • Akio Kuroda
    • 1
  1. 1.Department of Molecular Biotechnology, Graduate School of Advanced Sciences of MatterHiroshima UniversityHigashi-HiroshimaJapan

Personalised recommendations