Applied Microbiology and Biotechnology

, Volume 98, Issue 16, pp 7013–7025 | Cite as

Kinetic modeling of rhamnolipid production by Pseudomonas aeruginosa PAO1 including cell density-dependent regulation

  • Marius Henkel
  • Anke Schmidberger
  • Markus Vogelbacher
  • Christian Kühnert
  • Janina Beuker
  • Thomas Bernard
  • Thomas Schwartz
  • Christoph Syldatk
  • Rudolf Hausmann
Biotechnological products and process engineering

Abstract

The production of rhamnolipid biosurfactants by Pseudomonas aeruginosa is under complex control of a quorum sensing-dependent regulatory network. Due to a lack of understanding of the kinetics applicable to the process and relevant interrelations of variables, current processes for rhamnolipid production are based on heuristic approaches. To systematically establish a knowledge-based process for rhamnolipid production, a deeper understanding of the time-course and coupling of process variables is required. By combining reaction kinetics, stoichiometry, and experimental data, a process model for rhamnolipid production with P. aeruginosa PAO1 on sunflower oil was developed as a system of coupled ordinary differential equations (ODEs). In addition, cell density-based quorum sensing dynamics were included in the model. The model comprises a total of 36 parameters, 14 of which are yield coefficients and 7 of which are substrate affinity and inhibition constants. Of all 36 parameters, 30 were derived from dedicated experimental results, literature, and databases and 6 of them were used as fitting parameters. The model is able to describe data on biomass growth, substrates, and products obtained from a reference batch process and other validation scenarios. The model presented describes the time-course and interrelation of biomass, relevant substrates, and products on a process level while including a kinetic representation of cell density-dependent regulatory mechanisms.

Keywords

Rhamnolipid Biosurfactant Pseudomonas aeruginosa PAO1 Process model Modeling Quorum sensing 

Supplementary material

253_2014_5750_MOESM1_ESM.pdf (153 kb)
ESM 1(PDF 153 kb)

References

  1. Ayers CW (1956) Estimation of the higher fatty acids C7-C18. Anal Chim Acta 15(1):77–83. doi:10.1016/0003-2670(56)80014-7 CrossRefGoogle Scholar
  2. Bader FG (1978) Analysis of double-substrate limited growth. Biotechnol Bioeng 20(2):183–202. doi:10.1002/bit.260200203 PubMedCrossRefGoogle Scholar
  3. Baker D (1964) Colorimetric method for determining free fatty acids in vegetable oils. J Am Oil Chem Soc 41(1):21. doi:10.1007/Bf02661895 CrossRefGoogle Scholar
  4. Bergström S, Theorell H, Davide H (1946) On a metabolic product of Ps. pyocyanea, pyolipic acid, active against Mycobact. tuberculosis. Arkiv Kemi, Mineralogi och Geologi 23 A(13):1–12Google Scholar
  5. Borgos SEF, Bordel S, Sletta H, Ertesvag H, Jakobsen O, Bruheim P, Ellingsen TE, Nielsen J, Valla S (2013) Mapping global effects of the anti-sigma factor MucA in Pseudomonas fluorescens SBW25 through genome-scale metabolic modeling. BMC Syst Biol 7. doi:10.1186/1752-0509-7-19
  6. Cha M, Lee N, Kim M, Lee S (2008) Heterologous production of Pseudomonas aeruginosa EMS1 biosurfactant in Pseudomonas putida. Bioresour Technol 99(7):2192–2199. doi:10.1016/j.biortech.2007.05.035 PubMedCrossRefGoogle Scholar
  7. Chen F, Chen C, Riadi L, Ju L (2004) Modeling rhl quorum-sensing regulation on rhamnolipid production by Pseudomonas aeruginosa. Biotechnol Prog 20(5):1325–1331PubMedCrossRefGoogle Scholar
  8. de Lima CJB, Ribeiro EJ, Servulo EFC, Resende MM, Cardoso VL (2009) Biosurfactant production by Pseudomonas aeruginosa grown in residual soybean oil. Appl Biochem Biotechnol 152(1):156–168. doi:10.1007/s12010-008-8188-1 PubMedCrossRefGoogle Scholar
  9. Déziel E, Lépine F, Milot S, Villemur R (2000) Mass spectrometry monitoring of rhamnolipids from a growing culture of Pseudomonas aeruginosa strain 57RP. Biochim Biophys Acta 1485(2–3):145–152PubMedCrossRefGoogle Scholar
  10. Déziel E, Lépine F, Milot S, Villemur R (2003) rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiology 149:2005–2013. doi:10.1099/mic.0.26154-0 PubMedCrossRefGoogle Scholar
  11. Du HJ, Xu ZL, Shrout JD, Alber M (2011) Multiscale modeling of Pseudomonas aeruginosa swarming. Math Models Methods Appl Sci 21:939–954. doi:10.1142/S0218202511005428 PubMedCrossRefGoogle Scholar
  12. Eswari JS, Anand M, Venkateswarlu C (2013) Optimum culture medium composition for rhamnolipid production by Pseudomonas aeruginosa AT10 using a novel multi-objective optimization method. J Chem Technol Biotechnol 88(2):271–279. doi:10.1002/Jctb.3825 CrossRefGoogle Scholar
  13. Gilbert EJ (1993) Pseudomonas lipases—biochemical-properties and molecular-coning. Enzym Microb Technol 15(8):634–645. doi:10.1016/0141-0229(93)90062-7 CrossRefGoogle Scholar
  14. Henkel M, Müller MM, Kügler JH, Lovaglio RB, Contiero J, Syldatk C, Hausmann R (2012) Rhamnolipids as biosurfactants from renewable resources: concepts for next-generation rhamnolipid production. Process Biochem 47(8):1207–1219. doi:10.1016/j.procbio.2012.04.018 CrossRefGoogle Scholar
  15. Henkel M, Schmidberger A, Kühnert C, Beuker J, Bernard T, Schwartz T, Syldatk C, Hausmann R (2013) Kinetic modeling of the time course of N-butyryl-homoserine lactone concentration during batch cultivations of Pseudomonas aeruginosa PAO1. Appl Microbiol Biotechnol 97(17):7607–7616. doi:10.1007/s00253-013-5024-5 PubMedCrossRefGoogle Scholar
  16. Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB, Bagge N, Kumar N, Schembri MA, Song ZJ, Kristoffersen P, Manefield M, Costerton JW, Molin S, Eberl L, Steinberg P, Kjelleberg S, Hoiby N, Givskov M (2003) Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 22(15):3803–3815. doi:10.1093/Emboj/Cdg366 PubMedCentralPubMedCrossRefGoogle Scholar
  17. Heyd M, Kohnert A, Tan TH, Nusser M, Kirschhofer F, Brenner-Weiss G, Franzreb M, Berensmeier S (2008) Development and trends of biosurfactant analysis and purification using rhamnolipids as an example. Anal Bioanal Chem 391(5):1579–1590PubMedCrossRefGoogle Scholar
  18. Latifi A, Winson MK, Foglino M, Bycroft BW, Stewart GSAB, Lazdunski A, Williams P (1995) Multiple homologs of Luxr and Luxl control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Mol Microbiol 17(2):333–343. doi:10.1111/j.1365-2958.1995.mmi_17020333.x PubMedCrossRefGoogle Scholar
  19. Lindhout T, Lau PCY, Brewer D, Lam JS (2009) Truncation in the core oligosaccharide of lipopolysaccharide affects flagella-mediated motility in Pseudomonas aeruginosa PAO1 via modulation of cell surface attachment. Microbiology 155:3449–3460. doi:10.1099/Mic.0.030510-0 PubMedCrossRefGoogle Scholar
  20. Luo Z, Yuan XZ, Zhong H, Zeng GM, Liu ZF, Ma XL, Zhu YY (2013) Optimizing rhamnolipid production by Pseudomonas aeruginosa ATCC 9027 grown on waste frying oil using response surface method and batch-fed fermentation. J S-Cent Univ National 20(4):1015–1021. doi:10.1007/s11771-013-1578-8 CrossRefGoogle Scholar
  21. Luong JHT (1987) Generalization of Monod kinetics for analysis of growth data with substrate-inhibition. Biotechnol Bioeng 29(2):242–248. doi:10.1002/bit.260290215 PubMedCrossRefGoogle Scholar
  22. Madan B, Mishra P (2010) Co-expression of the lipase and foldase of Pseudomonas aeruginosa to a functional lipase in Escherichia coli. Appl Microbiol Biotechnol 85(3):597–604. doi:10.1007/s00253-009-2131-4 PubMedCrossRefGoogle Scholar
  23. Martinez A, Ostrovsky P, Nunn DN (1999) LipC, a second lipase of Pseudomonas aeruginosa, is LipB and Xcp dependent and is transcriptionally regulated by pilus biogenesis components. Mol Microbiol 34(2):317–326. doi:10.1046/j.1365-2958.1999.01601.x PubMedCrossRefGoogle Scholar
  24. Mata-Sandoval J, Karns J, Torrents A (1999) High-performance liquid chromatography method for the characterization of rhamnolipid mixtures produced by Pseudomonas aeruginosa UG2 on corn oil. J Chromatogr A 864:211–220PubMedCrossRefGoogle Scholar
  25. Medina-Moreno SA, Jimenez-Islas D, Gracida-Rodriguez JN, Gutierrez-Rojas M, Diaz-Ramirez IJ (2011) Modeling rhamnolipids production by Pseudomonas aeruginosa from immiscible carbon source in a batch system. Int J Environ Sci Technol 8(3):471–482CrossRefGoogle Scholar
  26. Monod J (1949) The growth of bacterial cultures. Annu Rev Microbiol 3:371–394CrossRefGoogle Scholar
  27. Müller MM, Hörmann B, Syldatk C, Hausmann R (2010) Pseudomonas aeruginosa PAO1 as a model for rhamnolipid production in bioreactor systems. Appl Microbiol Biotechnol 87(1):167–174. doi:10.1007/s00253-010-2513-7 PubMedCrossRefGoogle Scholar
  28. Mulligan C, Gibbs B (1993) Factors influencing the economics of biosurfactants. In: Kosaric N (ed) Biosurfactants: production–properties–applications. Surfactant science series, vol 48. Marcel Dekker, NY, pp 329–371Google Scholar
  29. Ochsner UA, Fiechter A, Reiser J (1994) Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. J Biol Chem 269:1–9Google Scholar
  30. Ochsner U, Reiser J, Fiechter A, Witholt B (1995) Production of Pseudomonas aeruginosa rhamnolipid biosurfactants in heterologous hosts. Appl Environ Microbiol 61(9):3503–3506PubMedCentralPubMedGoogle Scholar
  31. Oliveira FJS, Vazquez L, de Campos NP, Franca FP (2008) Production of rhamnolipids by a Pseudomonas alcaligenes strain. Process Biochem 44(4):383–389CrossRefGoogle Scholar
  32. Rahim R, Burrows LL, Monteiro MA, Perry MB, Lam JS (2000) Involvement of the rml locus in core oligosaccharide and O polysaccharide assembly in Pseudomonas aeruginosa. Microbiology 146:2803–2814PubMedGoogle Scholar
  33. Rahim R, Ochsner UA, Olvera C, Graninger M, Messner P, Lam JS, Soberón-Chávez G (2001) Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis. Mol Microbiol 40(3):708–718PubMedCrossRefGoogle Scholar
  34. Rehm BHA, Mitsky TA, Steinbüchel A (2001) Role of fatty acid de novo biosynthesis in polyhydroxyalkanoic acid (PHA) and rhamnolipid synthesis by Pseudomonads: establishment of the transacylase (PhaG)-mediated pathway for PHA biosynthesis in Escherichia coli. Appl Environ Microbiol 67(7):3102–3109PubMedCentralPubMedCrossRefGoogle Scholar
  35. Schenk T, Schuphan I, Schmidt B (1995) High-performance liquid-chromatographic determination of the rhamnolipids produced by Pseudomonas aeruginosa. J Chromatogr A 693(1):7–13. doi:10.1016/0021-9673(94)01127-Z PubMedCrossRefGoogle Scholar
  36. Schmidberger A, Henkel M, Hausmann R, Schwartz T (2013) Expression of genes involved in rhamnolipid synthesis in Pseudomonas aeruginosa PAO1 in a bioreactor cultivation. Appl Microbiol Biotechnol 97(13):5779–5791. doi:10.1007/s00253-013-4891-0 PubMedCrossRefGoogle Scholar
  37. Smith JL, Alford JA (1966) Inhibition of microbial lipases by fatty acids. J Appl Microbiol 14(5):699Google Scholar
  38. Soberón-Chávez G, Aguirre-Ramirez M, Ordonez L (2005) Is Pseudomonas aeruginosa only “sensing quorum”? Crit Rev Microbiol 31(3):171–182. doi:10.1080/10408410591005138 PubMedCrossRefGoogle Scholar
  39. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock RE, Lory S, Olson MV (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406(6799):959–964. doi:10.1038/35023079 PubMedCrossRefGoogle Scholar
  40. Trummler K, Effenberger F, Syldatk C (2003) An integrated microbial/enzymatic process for production of rhamnolipids and L-(+)-rhamnose from rapeseed oil with Pseudomonas sp DSM 2874. Eur J Lipid Sci Technol 105(10):563–571. doi:10.1002/ejlt.200300816 CrossRefGoogle Scholar
  41. Van Bogaert INA, Saerens K, De Muynck C, Develter D, Soetaert W, Vandamme EJ (2007) Microbial production and application of sophorolipids. Appl Microbiol Biotechnol 76(1):23–34PubMedCrossRefGoogle Scholar
  42. Verstraete W, Voets JP (1978) Evaluation of yield and maintenance coefficients, expressed in carbon units, for Pseudomonas fluorescens and Pseudomonas aeruginosa. Z Allg Mikrobiol 18(2):135–141. doi:10.1002/jobm.3630180208 PubMedCrossRefGoogle Scholar
  43. Walter V, Syldatk C, Hausmann R (2010) Microbial production of rhamnolipid biosurfactants. In: Flickinger MC (ed) Encyclopedia of industrial biotechnology, 2nd edn. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  44. Zhu K, Rock CO (2008) RhlA converts beta-hydroxyacyl-acyl carrier protein intermediates in fatty acid synthesis to the beta-hydroxydecanoyl-beta-hydroxydecanoate component of rhamnolipids in Pseudomonas aeruginosa. J Bacteriol 190(9):3147–3154. doi:10.1128/jb.00080-08 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Marius Henkel
    • 1
  • Anke Schmidberger
    • 2
  • Markus Vogelbacher
    • 3
  • Christian Kühnert
    • 3
  • Janina Beuker
    • 4
  • Thomas Bernard
    • 3
  • Thomas Schwartz
    • 2
  • Christoph Syldatk
    • 1
  • Rudolf Hausmann
    • 4
  1. 1.Institute of Process Engineering in Life Sciences, Section II: Technical BiologyKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Institute of Functional Interfaces, Department Microbiology of Natural and Technical InterfacesKarlsruhe Institute of Technology (KIT)Eggenstein-LeopoldshafenGermany
  3. 3.Department Systems for Measurement, Control and Diagnosis (MRD)Fraunhofer Institute of Optronics, System Technologies and Image ExploitationKarlsruheGermany
  4. 4.Institute of Food Science and Biotechnology (150), Section Bioprocess Engineering (150k)University of HohenheimStuttgartGermany

Personalised recommendations