Advertisement

Applied Microbiology and Biotechnology

, Volume 98, Issue 15, pp 6805–6815 | Cite as

Lactobacillus plantarum IFPL935 impacts colonic metabolism in a simulator of the human gut microbiota during feeding with red wine polyphenols

  • E. Barroso
  • T. Van de Wiele
  • A. Jiménez-Girón
  • I. Muñoz-González
  • P. J. Martín-Alvarez
  • M. V. Moreno-Arribas
  • B. Bartolomé
  • C. Peláez
  • M. C. Martínez-Cuesta
  • T. Requena
Applied microbial and cell physiology

Abstract

The colonic microbiota plays an important role in the bioavailibility of dietary polyphenols. This work has evaluated the impact on the gut microbiota of long-term feeding with both a red wine polyphenolic extract and the flavan-3-ol metabolizer strain Lactobacillus plantarum IFPL935. The study was conducted in the dynamic Simulator of the Human Intestinal Microbial Ecosystem (SHIME). The feeding of the gut microbiota model with red wine polyphenols caused an initial decrease in the counts of total bacteria in the ascending colon (AC), with Bacteroides, Clostridium coccoides/Eubacterium rectale and Bifidobacterium being the most affected bacterial groups. The bacterial counts recovered to initial numbers faster than the overall microbial fermentation and proteolysis, which seemed to be longer affected by polyphenols. Addition of L. plantarum IFPL935 helped to promptly recover total counts, Lactobacillus and Enterobacteriaceae and led to an increase in lactic acid formation in the AC vessel at the start of the polyphenol treatment as well as butyric acid in the transverse (TC) and descending (DC) vessels after 5 days. Moreover, L. plantarum IFPL935 favoured the conversion in the DC vessel of monomeric flavan-3-ols and their intermediate metabolites into phenylpropionic acids and in particular 3-(3′-hydroxyphenyl)propionic acid. The results open the possibilities of using L. plantarum IFPL935 as a food ingredient for helping individuals showing a low polyphenol-fermenting metabotype to increase their colonic microbial capacities of metabolizing dietary polyphenols.

Keywords

Lactobacillus Polyphenol Colonic metabolism Probiotic Intestinal microbiota 

Notes

Acknowledgments

The authors acknowledge funding from the Spanish Ministry for Science and Innovation (AGL2009-13361-C02-00, AGL2010-17499, AGL2012-35814, AGL2012-40172-C02-01, and Consolider Ingenio 2010 FUN-C-FOOD CSD2007-00063), the Comunidad de Madrid (ALIBIRD P2009/AGR-1469), the INIA (RM2011-00003-00-00) and CYTED (IBEROFUN 110 AC0386). The authors are participants in the COST Action FA1005 INFOGEST.

Supplementary material

253_2014_5744_MOESM1_ESM.pdf (303 kb)
ESM 1 (PDF 303 kb)

References

  1. Arranz S, Chiva-Blanch G, Valderas-Martínez P, Medina-Remón A, Lamuela-Raventós RM, Estruch R (2012) Wine, beer, alcohol and polyphenols on cardiovascular disease and cancer. Nutrients 4:759–781PubMedCentralPubMedCrossRefGoogle Scholar
  2. Barroso E, Sánchez-Patán F, Martín-Alvarez PJ, Bartolomé B, Moreno-Arribas MV, Peláez C, Requena T, Van de Wiele T, Martínez-Cuesta MC (2013) Lactobacillus plantarum IFPL935 favors the initial metabolism of red wine polyphenols when added to a colonic microbiota. J Agric Food Chem 61:10163–10172PubMedCrossRefGoogle Scholar
  3. Bodas R, Prieto N, García-González R, Andrés S, Giráldez FJ, Lopez S (2012) Manipulation of rumen fermentation and methane production with plant secondary metabolites. Anim Feed Sci Technol 176:78–93CrossRefGoogle Scholar
  4. Bolca S, Van de Wiele T, Possemiers S (2013) Gut metabotypes govern health effects of dietary polyphenols. Curr Opin Biotechnol 24:220–225PubMedCrossRefGoogle Scholar
  5. Bremner JM, Keeney RD (1965) Steam distillation methods for determination of ammonium, nitrate and nitrite. Anal Chim Acta 32:485–495CrossRefGoogle Scholar
  6. Busquet M, Calsamiglia S, Ferret A, Kamel C (2005) Screening for effects of plant extracts and active compounds of plants on dairy cattle rumen microbial fermentation in a continuous culture system. Anim Feed Sci Technol 124:597–613CrossRefGoogle Scholar
  7. Cueva C, Sánchez-Patán F, Monagas M, Walton GE, Gibson GR, Martín-Álvarez PJ, Bartolomé B, Moreno-Arribas MV (2013) In vitro fermentation of grape seed flavan-3-ol fractions by human faecal microbiota: changes in microbial groups and phenolic metabolites. FEMS Microbiol Ecol 83:792–805PubMedCrossRefGoogle Scholar
  8. Daglia M (2012) Polyphenols as antimicrobial agents. Curr Opin Biotechnol 23:174–181PubMedCrossRefGoogle Scholar
  9. De Boever P, Deplancke B, Verstraete W (2000) Fermentation by gut microbiota cultured in a Simulator of the Human Intestinal Microbial Ecosystem is improved by supplementing a soygerm powder. J Nutr 130:2599–2606PubMedGoogle Scholar
  10. Dolara P, Luceri C, De FC, Femia AP, Giovannelli L, Caderni G, Cecchini C, Silvi S, Orpianesi C, Cresci A (2005) Red wine polyphenols influence carcinogenesis, intestinal microflora, oxidative damage and gene expression profiles of colonic mucosa in F344 rats. Mutat Res 591:237–246PubMedCrossRefGoogle Scholar
  11. Duncan SH, Louis P, Flint HJ (2004) Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl Environ Microbiol 70:5810–5817PubMedCentralPubMedCrossRefGoogle Scholar
  12. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A 104:13780–13785PubMedCentralPubMedCrossRefGoogle Scholar
  13. Griffiths RI, Whiteley AS, O’Donnell AG, Bailey MJ (2000) Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA based microbial community composition. Appl Environ Microbiol 66:5488–5491PubMedCentralPubMedCrossRefGoogle Scholar
  14. Grootaert C, Van den Abbeele P, Marzorati M, Broekaert WF, Courtin CM, Delcour JA, Verstraete W, Van de Wiele T (2009) Comparison of prebiotic effects of arabinoxylan oligosaccharides and inulin in a simulator of the human intestinal microbial ecosystem. FEMS Microbiol Ecol 69:231–242PubMedCrossRefGoogle Scholar
  15. Hartemink R, Domenech VR, Rombouts FM (1997) LAMVAB — a new selective medium for the isolation of lactobacilli from faeces. J Microbiol Methods 29:77–84CrossRefGoogle Scholar
  16. Heilig HG, Zoetendal EG, Vaughan EE, Marteau P, Akkermans AD, de Vos WM (2002) Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. Appl Environ Microbiol 68:114–123PubMedCentralPubMedCrossRefGoogle Scholar
  17. Jacobs DM, Fuhrmann JC, van Dorsten FA, Rein D, Peters S, van Velzen EJ, Hollebrands B, Draijer R, van Duynhoven J, Garczarek U (2012) Impact of short-term intake of red wine and grape polyphenol extract on the human metabolome. J Agric Food Chem 60:3078–3085PubMedCrossRefGoogle Scholar
  18. Jiménez-Girόn A, Queipo-Ortuño MI, Boto-Ordόñez M, Muñoz-González I, Sánchez-Patán F, Monagas M, Martín-Álvarez PJ, Murri M, Tinahones FJ, Andrés-Lacueva C, Bartolomé B, Moreno-Arribas MV (2013) Comparative study of microbial-derived phenolic metabolites in human feces after intake of gin, red wine, and dealcoholized red wine. J Agric Food Chem 61:3909–3915CrossRefGoogle Scholar
  19. Jin JS, Hattori M (2012) Isolation and characterization of a human intestinal bacterium Eggerthella sp. CAT-1 capable of cleaving the C-ring of (+)-catechin and (−)-epicatechin, followed by p-dehydroxylation of the B-ring. Biol Pharm Bull 35:2252–2256PubMedCrossRefGoogle Scholar
  20. Kemperman RA, Gross G, Mondot S, Possemiers S, Marzorati M, Van de Wiele T, Dore J, Vaughan EE (2013) Impact of polyphenols from black tea and red wine/grape juice on a gut model microbiome. Food Res Int 53:659–669CrossRefGoogle Scholar
  21. Kishimoto Y, Tani M, Kondo K (2013) Pleiotropic preventive effects of dietary polyphenols in cardiovascular diseases. Eur J Clin Nutr 67:532–535PubMedCrossRefGoogle Scholar
  22. Kowalchuk GA, Bodelier PLE, Heilig GHJ, Stephen JR, Laanbroek HJ (1998) Community analysis of ammonia oxidizing bacteria, in relation to oxygen availability in soils and root-oxygenated sediments, using PCR, DGGE and oligonucleotide probe hybridisation. FEMS Microbiol Ecol 27:339–350CrossRefGoogle Scholar
  23. Kutschera M, Engst W, Blaut M, Braune A (2011) Isolation of catechin-converting human intestinal bacteria. J Appl Microbiol 111:165–175PubMedCrossRefGoogle Scholar
  24. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto JM, Kennedy S, Leonard P, Li J, Burgdorf K, Grarup N, Jørgensen T, Brandslund I, Nielsen HB, Juncker AS, Bertalan M, Levenez F, Pons N, Rasmussen S, Sunagawa S, Tap J, Tims S, Zoetendal EG, Brunak S, Clément K, Doré J, Kleerebezem M, Kristiansen K, Renault P, Sicheritz-Ponten T, de Vos WM, Zucker JD, Raes J, Hansen T, Bork P, Wang J, Ehrlich SD, MetaHIT consortium (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500:541–546PubMedCrossRefGoogle Scholar
  25. Marzorati M, Verhelst A, Luta G, Sinnott R, Verstraete W, Van de Wiele T, Possemiers S (2010) In vitro modulation of the human gastrointestinal microbial community by plant-derived polysaccharide-rich dietary supplements. Int J Food Microbiol 139:168–176PubMedCrossRefGoogle Scholar
  26. Monagas M, Khan N, Andrés-Lacueva C, Urpí-Sardá M, Vázquez-Agell M, Lamuela-Raventós RM, Estruch R (2009) Dihydroxylated phenolic acids derived from microbial metabolism reduce lipopolysaccharide-stimulated cytokine secretion by human peripheral blood mononuclear cells. Br J Nutr 102:201–206PubMedCrossRefGoogle Scholar
  27. Monagas M, Urpi-Sarda M, Sánchez-Patán F, Llorach R, Garrido I, Gómez-Cordovés C, Andrés-Lacueva C, Bartolome B (2010) Insights into the metabolism and microbial biotransformation of dietary flavan-3-ols and the bioactivity of their metabolites. Food Funct 1:233–253PubMedCrossRefGoogle Scholar
  28. Possemiers S, Verthé K, Uyttendaele S, Verstraete W (2004) PCR-DGGE-based quantification of stability of the microbial community in a simulator of the human intestinal microbial ecosystem. FEMS Microbiol Ecol 49:495–507PubMedCrossRefGoogle Scholar
  29. Queipo-Ortuño MI, Boto-Ordóñez M, Murri M, Gómez-Zumaquero JM, Clemente-Postigo M, Estruch R, Cardona Díaz F, Andrés-Lacueva C, Tinahones FJ (2012) Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers. Am J Clin Nutr 95:1323–1334PubMedCrossRefGoogle Scholar
  30. Rechner AR, Kroner C (2005) Anthocyanins and colonic metabolites of dietary polyphenols inhibit platelet function. Thromb Res 116:327–334PubMedCrossRefGoogle Scholar
  31. Requena T, Monagas M, Pozo-Bayón MA, Martín-Alvárez PJ, Bartolomé B, Del Campo R, Avila M, Martínez-Cuesta MC, Pelaez C, Moreno-Arribas MV (2010) Perspectives of the potential implications of wine polyphenols on human oral and gut microbiota. Trends Food Sci Technol 21:332–344CrossRefGoogle Scholar
  32. Russell WR, Duncan SH, Scobbie L, Duncan G, Cantlay L, Calder AG, Anderson SE, Flint HJ (2013) Major phenylpropanoid-derived metabolites in the human gut can arise from microbial fermentation of protein. Mol Nutr Food Res 57:523–535PubMedCrossRefGoogle Scholar
  33. Sánchez-Patán F, Monagas M, Moreno-Arribas MV, Bartolomé B (2011) Determination of microbial phenolic acids in human faeces by UPLC–ESI-TQ MS. J Agric Food Chem 59:2241–2247PubMedCrossRefGoogle Scholar
  34. Sánchez-Patán F, Cueva C, Monagas M, Walton GE, Gibson GR, Quintanilla-López JE, Lebrón-Aguilar R, Martín-Álvarez PJ, Moreno-Arribas MV, Bartolomé B (2012a) In vitro fermentation of a red wine extract by human gut microbiota: Changes in microbial groups and formation of phenolic metabolites. J Agric Food Chem 60:2136–2147PubMedCrossRefGoogle Scholar
  35. Sánchez-Patán F, Tabasco R, Monagas M, Requena T, Peláez C, Moreno-Arribas MV, Bartolomé B (2012b) Capability of Lactobacillus plantarum IFPL935 to catabolize flavan-3-ol compounds and complex phenolic extracts. J Agric Food Chem 60:7142–7151PubMedCrossRefGoogle Scholar
  36. Selma MV, Espín JC, Tomás-Barberán FA (2009) Interaction between phenolics and gut microbiota: role in human health. J Agric Food Chem 57:6485–6501PubMedCrossRefGoogle Scholar
  37. Stevenson DE, Hurst RD (2007) Polyphenolic phytochemicals—just antioxidants or much more? Cell Mol Life Sci 64:2900–2916PubMedCrossRefGoogle Scholar
  38. Tabasco R, Sánchez-Patán F, Monagas M, Bartolomé B, Moreno-Arribas MV, Peláez C, Requena T (2011) Effect of grape polyphenols on lactic acid bacteria and bifidobacteria growth: resistance and metabolism. Food Microbiol 28:1345–1352PubMedCrossRefGoogle Scholar
  39. Tomás-Barberán FA, Andrés-Lacueva C (2012) Polyphenols and health: current state and progress. J Agric Food Chem 60:8773–8775PubMedCrossRefGoogle Scholar
  40. Tzounis X, Vulevic J, Kuhnle GC, George T, Leonczak J, Gibson GR, Kwik-Uribe C, Spencer JP (2008) Flavonol monomer induced changes to the human faecal microflora. Br J Nutr 99:782–792PubMedCrossRefGoogle Scholar
  41. Tzounis X, Rodriguez-Mateos A, Vulevic J, Gibson GR, Kwik-Uribe C, Spencer JPE (2011) Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study. Am J Clin Nutr 93:62–72PubMedCrossRefGoogle Scholar
  42. Van de Wiele T, Boon N, Possemiers S, Jacobs H, Verstraete W (2007) Inulin-type fructans of longer degree of polymerization exert more pronounced in vitro prebiotic effects. J Appl Microbiol 102:452–460PubMedGoogle Scholar
  43. Van den Abbeele P, Grootaert C, Marzorati M, Possemiers S, Verstraete W, Gérard P, Rabot S, Bruneau A, El Aidy S, Derrien M, Zoetendal E, Kleerebezem M, Smidt H, Van de Wiele T (2010) Microbial community development in a dynamic gut model is reproducible, colon region specific, and selective for Bacteroidetes and Clostridium cluster IX. Appl Environ Microbiol 76:5237–5246PubMedCentralPubMedCrossRefGoogle Scholar
  44. Van den Abbeele P, Venema K, Van de Wiele T, Verstraete W, Possemiers S (2013) Different human gut models reveal the distinct fermentation patterns of arabinoxylan versus inulin. J Agric Food Chem 61:9819–9827PubMedCrossRefGoogle Scholar
  45. Van Dorsten FA, Peters S, Gross G, Gómez-Roldán V, Klinkenberg M, De Vos RC, Vaughan EE, Van Duynhoven JP, Possemiers S, Van de Wiele T, Jacobs DM (2012) Gut microbial metabolism of polyphenols from black tea and red wine/grape juice is source-specific and colon-region dependent. J Agric Food Chem 60:11331–11342PubMedCrossRefGoogle Scholar
  46. Van Duynhoven J, Vaughan EE, Jacobs DM, Kemperman RA, Van Velzen EJ, Gross G, Roger LC, Possemiers S, Smilde AK, Doré J, Westerhuis JA, Van de Wiele T (2011) Metabolic fate of polyphenols in the human superorganism. Proc Natl Acad Sci U S A 108:4531–4538PubMedCentralPubMedCrossRefGoogle Scholar
  47. Wang LQ, Meselhy MR, Li Y, Nakamura N, Min BS, Qin GW, Hattori M (2001) The heterocyclic ring fission and dehydroxylation of catechins and related compounds by Eubacterium sp. strain SDG-2, a human intestinal bacterium. Chem Pharm Bull 49:1640–1643PubMedCrossRefGoogle Scholar
  48. Ward NC, Croft KD, Puddey IB, Hodgson JM (2004) Supplementation with grape seed polyphenols results in increased urinary excretion of 3-hydroxyphenylpropionic acid, an important metabolite of proanthocyanidins in humans. J Agric Food Chem 52:5545–5549PubMedCrossRefGoogle Scholar
  49. Waterhouse AL (2002) Wine phenolics. Ann N Y Acad Sci 957:21–36PubMedCrossRefGoogle Scholar
  50. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, Sinha R, Gilroy E, Gupta K, Baldassano R, Nessel L, Li H, Bushman FD, Lewis JD (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–108PubMedCentralPubMedCrossRefGoogle Scholar
  51. Xia EQ, Deng GF, Guo YJ, Li HB (2010) Biological activities of polyphenols from grapes. Int J Mol Sci 11:622–646PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • E. Barroso
    • 1
  • T. Van de Wiele
    • 2
  • A. Jiménez-Girón
    • 1
  • I. Muñoz-González
    • 1
  • P. J. Martín-Alvarez
    • 1
  • M. V. Moreno-Arribas
    • 1
  • B. Bartolomé
    • 1
  • C. Peláez
    • 1
  • M. C. Martínez-Cuesta
    • 1
  • T. Requena
    • 1
  1. 1.Departamento de Biotecnología y Microbiología de AlimentosInstituto de Investigación en Ciencias de la Alimentación CIAL (CSIC-UAM)MadridSpain
  2. 2.LabMET, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium

Personalised recommendations