Applied Microbiology and Biotechnology

, Volume 98, Issue 15, pp 6701–6713 | Cite as

Enhancing recombinant protein production with an Escherichia coli host strain lacking insertion sequences

  • Myung Keun Park
  • Sang Hee Lee
  • Kyung Seok Yang
  • Suk-Chae Jung
  • Jun Hyoung LeeEmail author
  • Sun Chang KimEmail author
Applied genetics and molecular biotechnology


The genomic stability and integrity of host strains are critical for the production of recombinant proteins in biotechnology. Bacterial genomes contain numerous jumping genetic elements, the insertion sequences (ISs) that cause a variety of genetic rearrangements, resulting in adverse effects such as genome and recombinant plasmid instability. To minimize the harmful effects of ISs on the expression of recombinant proteins in Escherichia coli, we developed an IS-free, minimized E. coli strain (MS56) in which about 23 % of the genome, including all ISs and many unnecessary genes, was removed. Here, we compared the expression profiles of recombinant proteins such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and bone morphogenetic protein-2 (BMP2) in MG1655 and MS56. Hopping of ISs (IS1, IS3, or IS5) into the TRAIL and BMP2 genes occurred at the rate of ~10−8/gene/h in MG1655 whereas such events were not observed in MS56. Even though IS hopping occurred very rarely (10−8/gene/h), cells containing the IS-inserted TRAIL and BMP2 plasmids became dominant (~52 % of the total population) 28 h after fermentation began due to their growth advantage over cells containing intact plasmids, significantly reducing recombinant protein production in batch fermentation. Our findings clearly indicate that IS hopping is detrimental to the industrial production of recombinant proteins, emphasizing the importance of the development of IS-free host strains.


Insertion sequence IS hopping E. coli Genomic stability 



This work was supported by grants from the Intelligent Synthetic Biology Center of Global Frontier Project funded by the Ministry of Science, ICT and Future Planning (2011–0031955) and the Next-Generation BioGreen 21 Program (SSAC; PJ008110). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Supplementary material

253_2014_5739_MOESM1_ESM.pdf (57 kb)
ESM 1 (PDF 56 kb)


  1. Arbabi-Ghahroudi M, Tanha J, MacKenzie R (2005) Prokaryotic expression of antibodies. Cancer Metastasis Rev 24(4):501–519. doi: 10.1007/s10555-005-6193-1 PubMedCrossRefGoogle Scholar
  2. Baneyx F, Mujacic M (2004) Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol 22(11):1399–1408. doi: 10.1038/nbt1029 PubMedCrossRefGoogle Scholar
  3. Barbotin JN (1994) Immobilization of recombinant bacteria. A strategy to improve plasmid stability. Ann N Y Acad Sci 721:303–309PubMedCrossRefGoogle Scholar
  4. Bell CE (2005) Structure and mechanism of Escherichia coli RecA ATPase. Mol Microbiol 58(2):358–366. doi: 10.1111/j.1365-2958.2005.04876.x PubMedCrossRefGoogle Scholar
  5. Bentley WE, Mirjalili N, Andersen DC, Davis RH, Kompala DS (1990) Plasmid-encoded protein: the principal factor in the "metabolic burden" associated with recombinant bacteria. Biotechnol Bioeng 35(7):668–681. doi: 10.1002/bit.260350704 PubMedCrossRefGoogle Scholar
  6. Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277(5331):1453–1462PubMedCrossRefGoogle Scholar
  7. Bower DM, Prather KL (2009) Engineering of bacterial strains and vectors for the production of plasmid DNA. Appl Microbiol Biotechnol 82(5):805–813. doi: 10.1007/s00253-009-1889-8 PubMedCrossRefGoogle Scholar
  8. Charlesworth B, Sniegowski P, Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371(6494):215–220PubMedCrossRefGoogle Scholar
  9. Csorgo B, Feher T, Timar E, Blattner FR, Posfai G (2012) Low-mutation-rate, reduced-genome Escherichia coli: an improved host for faithful maintenance of engineered genetic constructs. Microb Cell Factories 11:11. doi: 10.1186/1475-2859-11-11 CrossRefGoogle Scholar
  10. Durfee T, Nelson R, Baldwin S, Plunkett G 3rd, Burland V, Mau B, Petrosino JF, Qin X, Muzny DM, Ayele M, Gibbs RA, Csorgo B, Posfai G, Weinstock GM, Blattner FR (2008) The complete genome sequence of Escherichia coli DH10B: insights into the biology of a laboratory workhorse. J Bacteriol 190(7):2597–2606. doi: 10.1128/JB.01695-07 PubMedCentralPubMedCrossRefGoogle Scholar
  11. Friehs K (2004) Plasmid copy number and plasmid stability. Adv Biochem Eng Biotechnol 86:47–82PubMedGoogle Scholar
  12. Gibson DG, Benders GA, Andrews-Pfannkoch C, Denisova EA, Baden-Tillson H, Zaveri J, Stockwell TB, Brownley A, Thomas DW, Algire MA, Merryman C, Young L, Noskov VN, Glass JI, Venter JC, Hutchison CA 3rd, Smith HO (2008) Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319(5867):1215–1220. doi: 10.1126/science.1151721 PubMedCrossRefGoogle Scholar
  13. Gillet R, Felden B (2001) Emerging views on tmRNA-mediated protein tagging and ribosome rescue. Mol Microbiol 42(4):879–885PubMedCrossRefGoogle Scholar
  14. Glick BR (1995) Metabolic load and heterologous gene expression. Biotechnol Adv 13(2):247–261PubMedCrossRefGoogle Scholar
  15. Ikeda M (2003) Amino acid production processes. Adv Biochem Eng Biotechnol 79:1–35PubMedGoogle Scholar
  16. Jain C (2002) Degradation of mRNA in Escherichia coli. IUBMB Life 54(6):315–321. doi: 10.1080/15216540216036 PubMedCrossRefGoogle Scholar
  17. Jana S, Deb JK (2005) Strategies for efficient production of heterologous proteins in Escherichia coli. Appl Microbiol Biotechnol 67(3):289–298. doi: 10.1007/s00253-004-1814-0 PubMedCrossRefGoogle Scholar
  18. Jang SA, Sung BH, Cho JH, Kim SC (2009) Direct expression of antimicrobial peptides in an intact form by a translationally coupled two-cistron expression system. Appl Environ Microbiol 75(12):3980–3986. doi: 10.1128/AEM.02753-08 PubMedCentralPubMedCrossRefGoogle Scholar
  19. Keasling JD (1999) Gene-expression tools for the metabolic engineering of bacteria. Trends Biotechnol 17(11):452–460PubMedCrossRefGoogle Scholar
  20. Keseler IM, Mackie A, Peralta-Gil M, Santos-Zavaleta A, Gama-Castro S, Bonavides-Martinez C, Fulcher C, Huerta AM, Kothari A, Krummenacker M, Latendresse M, Muniz-Rascado L, Ong Q, Paley S, Schroder I, Shearer AG, Subhraveti P, Travers M, Weerasinghe D, Weiss V, Collado-Vides J, Gunsalus RP, Paulsen I, Karp PD (2013) EcoCyc: fusing model organism databases with systems biology. Nucleic Acids Res 41(Database issue):D605–D612. doi: 10.1093/nar/gks1027 PubMedCentralPubMedCrossRefGoogle Scholar
  21. Kim MH, Billiar TR, Seol DW (2004) The secretable form of trimeric TRAIL, a potent inducer of apoptosis. Biochem Biophys Res Commun 321(4):930–935. doi: 10.1016/j.bbrc.2004.07.046 PubMedCrossRefGoogle Scholar
  22. Kwok R (2010) Five hard truths for synthetic biology. Nature 463(7279):288–290. doi: 10.1038/463288a PubMedCrossRefGoogle Scholar
  23. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685PubMedCrossRefGoogle Scholar
  24. Lee SY (1996) High cell-density culture of Escherichia coli. Trends Biotechnol 14(3):98–105. doi: 10.1016/0167-7799(96)80930-9 PubMedCrossRefGoogle Scholar
  25. Lee C, Kim J, Shin SG, Hwang S (2006) Absolute and relative QPCR quantification of plasmid copy number in Escherichia coli. J Biotechnol 123(3):273–280. doi: 10.1016/j.jbiotec.2005.11.014 PubMedCrossRefGoogle Scholar
  26. Lee JH, Sung BH, Kim MS, Blattner FR, Yoon BH, Kim JH, Kim SC (2009) Metabolic engineering of a reduced-genome strain of Escherichia coli for l-threonine production. Microb Cell Factories 8:2. doi: 10.1186/1475-2859-8-2 CrossRefGoogle Scholar
  27. Lesic B, Zouine M, Ducos-Galand M, Huon C, Rosso ML, Prevost MC, Mazel D, Carniel E (2012) A natural system of chromosome transfer in Yersinia pseudotuberculosis. PLoS Genet 8(3):e1002529. doi: 10.1371/journal.pgen.1002529 PubMedCentralPubMedCrossRefGoogle Scholar
  28. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25(4):402–408. doi: 10.1006/meth.2001.1262 PubMedCrossRefGoogle Scholar
  29. Luo Q, Shen YL, Wei DZ, Cao W (2006) Optimization of culture on the overproduction of TRAIL in high-cell-density culture by recombinant Escherichia coli. Appl Microbiol Biotechnol 71(2):184–191. doi: 10.1007/s00253-005-0131-6 PubMedCrossRefGoogle Scholar
  30. Morales-Soto N, Forst SA (2011) The xnp1 P2-like tail synthesis gene cluster encodes xenorhabdicin and is required for interspecies competition. J Bacteriol 193(14):3624–3632. doi: 10.1128/JB.00092-11 PubMedCentralPubMedCrossRefGoogle Scholar
  31. Nakamura K, Inouye M (1981) Inactivation of the Serratia marcescens gene for the lipoprotein in Escherichia coli by insertion sequences, IS1 and IS5; sequence analysis of junction points. Mol Gen Genet 183(1):107–114PubMedCrossRefGoogle Scholar
  32. Nesbeth DN, Perez-Pardo MA, Ali S, Ward J, Keshavarz-Moore E (2012) Growth and productivity impacts of periplasmic nuclease expression in an Escherichia coli Fab' fragment production strain. Biotechnol Bioeng 109(2):517–527. doi: 10.1002/bit.23316 PubMedCrossRefGoogle Scholar
  33. O'Kennedy RD, Baldwin C, Keshavarz-Moore E (2000) Effects of growth medium selection on plasmid DNA production and initial processing steps. J Biotechnol 76(2–3):175–183PubMedCrossRefGoogle Scholar
  34. Parkhill J, Wren BW, Thomson NR, Titball RW, Holden MT, Prentice MB, Sebaihia M, James KD, Churcher C, Mungall KL, Baker S, Basham D, Bentley SD, Brooks K, Cerdeno-Tarraga AM, Chillingworth T, Cronin A, Davies RM, Davis P, Dougan G, Feltwell T, Hamlin N, Holroyd S, Jagels K, Karlyshev AV, Leather S, Moule S, Oyston PC, Quail M, Rutherford K, Simmonds M, Skelton J, Stevens K, Whitehead S, Barrell BG (2001) Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413(6855):523–527. doi: 10.1038/35097083 PubMedCrossRefGoogle Scholar
  35. Peternel S, Komel R (2011) Active protein aggregates produced in Escherichia coli. Int J Mol Sci 12(11):8275–8287. doi: 10.3390/ijms12118275 PubMedCentralPubMedCrossRefGoogle Scholar
  36. Pfleger BF, Pitera DJ, Smolke CD, Keasling JD (2006) Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat Biotechnol 24(8):1027–1032. doi: 10.1038/nbt1226 PubMedCrossRefGoogle Scholar
  37. Posfai G, Plunkett G 3rd, Feher T, Frisch D, Keil GM, Umenhoffer K, Kolisnychenko V, Stahl B, Sharma SS, de Arruda M, Burland V, Harcum SW, Blattner FR (2006) Emergent properties of reduced-genome Escherichia coli. Science 312(5776):1044–1046. doi: 10.1126/science.1126439 PubMedCrossRefGoogle Scholar
  38. Rawat P, Kumar S, Pental D, Burma PK (2009) Inactivation of a transgene due to transposition of insertion sequence (IS136) of Agrobacterium tumefaciens. J Biosci 34(2):199–202. doi: 10.1007/s12038-009-0023-5 PubMedCrossRefGoogle Scholar
  39. Riesenberg D, Menzel K, Schulz V, Schumann K, Veith G, Zuber G, Knorre WA (1990) High cell density fermentation of recombinant Escherichia coli expressing human interferon alpha 1. Appl Microbiol Biotechnol 34(1):77–82PubMedGoogle Scholar
  40. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  41. Schneider D, Lenski RE (2004) Dynamics of insertion sequence elements during experimental evolution of bacteria. Res Microbiol 155(5):319–327. doi: 10.1016/j.resmic.2003.12.008 PubMedCrossRefGoogle Scholar
  42. Schneider D, Duperchy E, Coursange E, Lenski RE, Blot M (2000) Long-term experimental evolution in Escherichia coli: IX. Characterization of insertion sequence-mediated mutations and rearrangements. Genetics 156(2):477–488PubMedCentralPubMedGoogle Scholar
  43. Serres MH, Goswami S, Riley M (2004) GenProtEC: an updated and improved analysis of functions of Escherichia coli K-12 proteins. Nucleic Acids Res 32(Database issue):D300–D302. doi: 10.1093/nar/gkh087 PubMedCentralPubMedCrossRefGoogle Scholar
  44. Siguier P, Varani A, Perochon J, Chandler M (2012) Exploring bacterial insertion sequences with ISfinder: objectives, uses, and future developments. Methods Mol Biol 859:91–103. doi: 10.1007/978-1-61779-603-6_5 PubMedCrossRefGoogle Scholar
  45. Solyga A, Bartosik D (2004) Entrapment vectors—how to capture a functional transposable element. Pol J Microbiol 53(3):139–144PubMedGoogle Scholar
  46. Sprenger M (2011) ECDC and the Escherichia coli outbreak in Germany. Lancet 377(9784):2180. doi: 10.1016/S0140-6736(11)60963-X PubMedCrossRefGoogle Scholar
  47. Stroeher UH, Jedani KE, Dredge BK, Morona R, Brown MH, Karageorgos LE, Albert MJ, Manning PA (1995) Genetic rearrangements in the rfb regions of Vibrio cholerae O1 and O139. Proc Natl Acad Sci U S A 92(22):10374–10378PubMedCentralPubMedCrossRefGoogle Scholar
  48. Tobes R, Pareja E (2006) Bacterial repetitive extragenic palindromic sequences are DNA targets for Insertion Sequence elements. BMC Genomics 7:62. doi: 10.1186/1471-2164-7-62 PubMedCentralPubMedCrossRefGoogle Scholar
  49. Umenhoffer K, Feher T, Baliko G, Ayaydin F, Posfai J, Blattner FR, Posfai G (2010) Reduced evolvability of Escherichia coli MDS42, an IS-less cellular chassis for molecular and synthetic biology applications. Microb Cell Factories 9:38. doi: 10.1186/1475-2859-9-38 CrossRefGoogle Scholar
  50. Vallejo LF, Brokelmann M, Marten S, Trappe S, Cabrera-Crespo J, Hoffmann A, Gross G, Weich HA, Rinas U (2002) Renaturation and purification of bone morphogenetic protein-2 produced as inclusion bodies in high-cell-density cultures of recombinant Escherichia coli. J Biotechnol 94(2):185–194PubMedCrossRefGoogle Scholar
  51. Wang ZJ, Le GW, Shi YH, Wegrzyn G (2001) Medium design for plasmid DNA production based on stoichiometric model. Process Biochem 36(11):1085–1093. doi: 10.1016/S0032-9592(01)00149-2 CrossRefGoogle Scholar
  52. Win MN, Smolke CD (2007) A modular and extensible RNA-based gene-regulatory platform for engineering cellular function. Proc Natl Acad Sci U S A 104(36):14283–14288. doi: 10.1073/pnas.0703961104 PubMedCentralPubMedCrossRefGoogle Scholar
  53. Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, Hewick RM, Wang EA (1988) Novel regulators of bone formation: molecular clones and activities. Science 242(4885):1528–1534PubMedCrossRefGoogle Scholar
  54. Yamazaki Y, Niki H, Kato J (2008) Profiling of Escherichia coli Chromosome database. Methods Mol Biol 416:385–389. doi: 10.1007/978-1-59745-321-9_26 PubMedCrossRefGoogle Scholar
  55. Yau SY, Keshavarz-Moore E, Ward J (2008) Host strain influences on supercoiled plasmid DNA production in Escherichia coli: implications for efficient design of large-scale processes. Biotechnol Bioeng 101(3):529–544. doi: 10.1002/bit.21915 PubMedCrossRefGoogle Scholar
  56. Yu Y, Lee C, Kim J, Hwang S (2005) Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol Bioeng 89(6):670–679. doi: 10.1002/bit.20347 PubMedCrossRefGoogle Scholar
  57. Yu BJ, Kang KH, Lee JH, Sung BH, Kim MS, Kim SC (2008) Rapid and efficient construction of markerless deletions in the Escherichia coli genome. Nucleic Acids Res 36(14):e84. doi: 10.1093/nar/gkn359 PubMedCentralPubMedCrossRefGoogle Scholar
  58. Zhou J, Rudd KE (2013) EcoGene 3.0. Nucleic Acids Res 41(Database issue):D613–D624. doi: 10.1093/nar/gks1235 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Myung Keun Park
    • 1
  • Sang Hee Lee
    • 1
  • Kyung Seok Yang
    • 1
  • Suk-Chae Jung
    • 1
  • Jun Hyoung Lee
    • 2
    Email author
  • Sun Chang Kim
    • 1
    Email author
  1. 1.Department of Biological SciencesKAISTDaejeonSouth Korea
  2. 2.KAIST Institute for BiocenturyKAISTDaejeonSouth Korea

Personalised recommendations