Applied Microbiology and Biotechnology

, Volume 98, Issue 11, pp 5105–5115 | Cite as

Proteomic analyses of the phase transition from acidogenesis to solventogenesis using solventogenic and non-solventogenic Clostridium acetobutylicum strains

  • Yu-Sin Jang
  • Mee-Jung Han
  • Joungmin Lee
  • Jung Ae Im
  • Yu Hyun Lee
  • Eleftherios Terry Papoutsakis
  • George Bennett
  • Sang Yup LeeEmail author
Genomics, transcriptomics, proteomics


The fermentation carried out by the solvent-producing bacterium, Clostridium acetobutylicum, is characterized by two distinct phases: acidogenic and solventogenic phases. Understanding the cellular physiological changes occurring during the phase transition in clostridial fermentation is important for the enhanced production of solvents. To identify protein changes upon entry to stationary phase where solvents are typically produced, we herein analyzed the proteomic profiles of the parental wild type C. acetobutylicum strains, ATCC 824, the non-solventogenic strain, M5 that has lost the solventogenic megaplasmid pSOL1, and the synthetic simplified alcohol forming strain, M5 (pIMP1E1AB) expressing plasmid-based CoA-transferase (CtfAB) and aldehyde/alcohol dehydrogenase (AdhE1). A total of 68 protein spots, corresponding to 56 unique proteins, were unambiguously identified as being differentially present after the phase transitions in the three C. acetobutylicum strains. In addition to changes in proteins known to be involved in solventogenesis (AdhE1 and CtfB), we identified significant alterations in enzymes involved in sugar transport and metabolism, fermentative pathway, heat shock proteins, translation, and amino acid biosynthesis upon entry into the stationary phase. Of these, four increased proteins (AdhE1, CAC0233, CtfB and phosphocarrier protein HPr) and six decreased proteins (butyrate kinase, ferredoxin:pyruvate oxidoreductase, phenylalanyl-tRNA synthetase, adenylosuccinate synthase, pyruvate kinase and valyl-tRNA synthetase) showed similar patterns in the two strains capable of butanol formation. Interestingly, significant changes of several proteins by post-translational modifications were observed in the solventogenic phase. The proteomic data from this study will improve our understanding on how cell physiology is affected through protein levels patterns in clostridia.


Butanol Clostridium acetobutylicum Phase transition Proteome Solventogenesis 



This work was supported by the National Research Foundation of Korea (NRF-2012-C1AAA001-2012M1A2A2026556) through the Technology Development Program to Solve Climate Changes of the Ministry of Education, Science and Technology (MEST) to S.Y. Lee; the Advanced Biomass R&D Center of Korea (2011-0028386) through the Global Frontier Research Program of the MEST to S.Y. Lee; and the Basic Science Research Program (2010-0008826) from the NRF to M.-J. Han. Further support from BioFuelChem and the KAIST EEWS program from the MEST is appreciated.

Conflict of interest

We declare that we do not have conflict of interest.

Supplementary material

253_2014_5738_MOESM1_ESM.pdf (852 kb)
ESM 1 (PDF 852 kb)


  1. Alsaker KV, Papoutsakis ET (2005) Transcriptional program of early sporulation and stationary-phase events in Clostridium acetobutylicum. J Bacteriol 187:7103–7118PubMedCentralPubMedCrossRefGoogle Scholar
  2. Alsaker KV, Paredes C, Papoutsakis ET (2010) Metabolite stress and tolerance in the production of biofuels and chemicals: gene-expression-based systems analysis of butanol, butyrate, and acetate stresses in the anaerobe Clostridium acetobutylicum. Biotechnol Bioeng 105:1131–1147PubMedGoogle Scholar
  3. Altschul SF, Wootton JC, Gertz EM, Agarwala R, Morgulis A, Schaffer AA, Yu YK (2005) Protein database searches using compositionally adjusted substitution matrices. FEBS J 272:5101–5109PubMedCentralPubMedCrossRefGoogle Scholar
  4. Amador-Noguez D, Brasg IA, Feng XJ, Roquet N, Rabinowitz JD (2011) Metabolome remodeling during the acidogenic–solventogenic transition in Clostridium acetobutylicum. Appl Environ Microbiol 77:7984–7997PubMedCentralPubMedCrossRefGoogle Scholar
  5. Bachrach G, Banai M, Fishman Y, Bercovier H (1997) Delayed-type hypersensitivity activity of the Brucella L7/L12 ribosomal protein depends on posttranslational modification. Infect Immun 65:267–271PubMedCentralPubMedGoogle Scholar
  6. Bahl H, Muller H, Behrens S, Joseph H, Narberhaus F (1995) Expression of heat shock genes in Clostridium acetobutylicum. FEMS Microbiol Rev 17:341–348PubMedCrossRefGoogle Scholar
  7. Bai X, Ji Z (2012) Phosphoproteomic investigation of a solvent producing bacterium Clostridium acetobutylicum. Appl Microbiol Biotechnol 95:201–211PubMedCrossRefGoogle Scholar
  8. Balodimos IA, Rapaport E, Kashket ER (1990) Protein phosphorylation in response to stress in Clostridium acetobutylicum. Appl Environ Microbiol 56:2170–2173PubMedCentralPubMedGoogle Scholar
  9. Bruckner R, Titgemeyer F (2002) Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol Lett 209:141–148PubMedCrossRefGoogle Scholar
  10. Cary JW, Petersen DJ, Papoutsakis ET, Bennett GN (1990) Cloning and expression of Clostridium acetobutylicum ATCC 824 acetoacetyl-coenzyme A:acetate/butyrate:coenzyme A-transferase in Escherichia coli. Appl Environ Microbiol 56:1576–1583PubMedCentralPubMedGoogle Scholar
  11. Choi SJ, Lee J, Jang YS, Park JH, Lee SY, Kim IH (2012) Effects of nutritional enrichment on the production of acetone–butanol–ethanol (ABE) by Clostridium acetobutylicum. J Microbiol 50:1063–1066PubMedCrossRefGoogle Scholar
  12. Clark SW, Bennett GN, Rudolph FB (1989) Isolation and characterization of mutants of Clostridium acetobutylicum ATCC 824 deficient in acetoacetyl-coenzyme A:acetate/butyrate:coenzyme A transferase (EC and in other solvent pathway enzymes. Appl Environ Microbiol 55:970–976PubMedCentralPubMedGoogle Scholar
  13. Cooksley CM, Zhang Y, Wang H, Redl S, Winzer K, Minton NP (2012) Targeted mutagenesis of the Clostridium acetobutylicum acetone–butanol–ethanol fermentation pathway. Metab Eng 14:630–641PubMedCrossRefGoogle Scholar
  14. Cornillot E, Nair RV, Papoutsakis ET, Soucaille P (1997) The genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 reside on a large plasmid whose loss leads to degeneration of the strain. J Bacteriol 179:5442–5447PubMedCentralPubMedGoogle Scholar
  15. Crown SB, Indurthi DC, Ahn WS, Choi J, Papoutsakis ET, Antoniewicz MR (2011) Resolving the TCA cycle and pentose–phosphate pathway of Clostridium acetobutylicum ATCC 824: isotopomer analysis, in vitro activities and expression analysis. Biotechnol J 6:300–305PubMedCrossRefGoogle Scholar
  16. Desai RP, Papoutsakis ET (1999) Antisense RNA strategies for metabolic engineering of Clostridium acetobutylicum. Appl Environ Microbiol 65:936–945PubMedCentralPubMedGoogle Scholar
  17. Deutscher J, Francke C, Postma PW (2006) How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 70:939–1031PubMedCentralPubMedCrossRefGoogle Scholar
  18. Durre P (2007) Biobutanol: an attractive biofuel. Biotechnol J 2:1525–1534PubMedCrossRefGoogle Scholar
  19. Fischer RJ, Helms J, Durre P (1993) Cloning, sequencing, and molecular analysis of the sol operon of Clostridium acetobutylicum, a chromosomal locus involved in solventogenesis. J Bacteriol 175:6959–6969PubMedCentralPubMedGoogle Scholar
  20. Green EM (2011) Fermentative production of butanol—the industrial perspective. Curr Opin Biotechnol 22:337–343PubMedCrossRefGoogle Scholar
  21. Green EM, Boynton ZL, Harris LM, Rudolph FB, Papoutsakis ET, Bennett GN (1996) Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824. Microbiology 142(Pt 8):2079–2086PubMedCrossRefGoogle Scholar
  22. Grimmler C, Janssen H, Kraubetae D, Fischer RJ, Bahl H, Durre P, Liebl W, Ehrenreich A (2011) Genome-wide gene expression analysis of the switch between acidogenesis and solventogenesis in continuous cultures of Clostridium acetobutylicum. J Mol Microbiol Biotechnol 20:1–15PubMedCrossRefGoogle Scholar
  23. Gu Y, Jiang Y, Wu H, Liu X, Li Z, Li J, Xiao H, Shen Z, Dong H, Yang Y, Li Y, Jiang W, Yang S (2011) Economical challenges to microbial producers of butanol: feedstock, butanol ratio and titer. Biotechnol J 6:1348–1357PubMedCrossRefGoogle Scholar
  24. Haendeler J (2006) Thioredoxin-1 and posttranslational modifications. Antioxid Redox Signal 8:1723–1728PubMedCrossRefGoogle Scholar
  25. Han M-J, Jeong KJ, Yoo J-S, Lee SY (2003) Engineering Escherichia coli for increased productivity of serine-rich proteins based on proteome profiling. Appl Environ Microbiol 69:5772–5781PubMedCentralPubMedCrossRefGoogle Scholar
  26. Hanson KG, Steinhauer K, Reizer J, Hillen W, Stulke J (2002) HPr kinase/phosphatase of Bacillus subtilis: expression of the gene and effects of mutations on enzyme activity, growth and carbon catabolite repression. Microbiology 148:1805–1811PubMedGoogle Scholar
  27. Harris LM, Desai RP, Welker NE, Papoutsakis ET (2000) Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: need for new phenomenological models for solventogenesis and butanol inhibition? Biotechnol Bioeng 67:1–11PubMedCrossRefGoogle Scholar
  28. Husemann MH, Papoutsakis ET (1988) Solventogenesis in Clostridium acetobutylicum fermentations related to carboxylic acid and proton concentrations. Biotechnol Bioeng 32:843–852PubMedCrossRefGoogle Scholar
  29. Hutkins RW, Kashket ER (1986) Phosphotransferase activity in Clostridium acetobutylicum from acidogenic and solventogenic phases of growth. Appl Environ Microbiol 51:1121–1123PubMedCentralPubMedGoogle Scholar
  30. Jang Y-S, Lee J, Malaviya A, Seung DY, Cho JH, Lee SY (2012a) Butanol production from renewable biomass: rediscovery of metabolic pathways and metabolic engineering. Biotechnol J 7:186–198PubMedCrossRefGoogle Scholar
  31. Jang Y-S, Lee JY, Lee J, Park JH, Im JA, Eom M-H, Lee J, Lee S-H, Song H, Cho J-H, Seung DY, Lee SY (2012b) Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum. mBio 3(5):e00314–12Google Scholar
  32. Jang Y-S, Park JM, Choi S, Choi YJ, Seung DY, Cho JH, Lee SY (2012c) Engineering of microorganisms for the production of biofuels and perspectives based on systems metabolic engineering approaches. Biotechnol Adv 30:989–1000PubMedCrossRefGoogle Scholar
  33. Jang YS, Woo HM, Im JA, Kim IH, Lee SY (2013) Metabolic engineering of Clostridium acetobutylicum for enhanced production of butyric acid. Appl Microbiol Biotechnol 97:9355–9363PubMedCrossRefGoogle Scholar
  34. Janssen H, Doring C, Ehrenreich A, Voigt B, Hecker M, Bahl H, Fischer RJ (2010) A proteomic and transcriptional view of acidogenic and solventogenic steady-state cells of Clostridium acetobutylicum in a chemostat culture. Appl Microbiol Biotechnol 87:2209–2226PubMedCentralPubMedCrossRefGoogle Scholar
  35. Jones DT, Woods DR (1986) Acetone–butanol fermentation revisited. Microbiol Rev 50:484–524PubMedCentralPubMedGoogle Scholar
  36. Jones SW, Paredes CJ, Tracy B, Cheng N, Sillers R, Senger RS, Papoutsakis ET (2008) The transcriptional program underlying the physiology of clostridial sporulation. Genome Biol 9:R114PubMedCentralPubMedCrossRefGoogle Scholar
  37. Kirschner M (2006) n-Butanol. Chemical Market Reporter, 30 Jan–5 Feb, ABI/INFORM Global; p 42Google Scholar
  38. Kuit W, Minton NP, Lopez-Contreras AM, Eggink G (2012) Disruption of the acetate kinase (ack) gene of Clostridium acetobutylicum results in delayed acetate production. Appl Microbiol Biotechnol 94:729–741PubMedCentralPubMedCrossRefGoogle Scholar
  39. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  40. Lee JW, Lee SY, Song H, Yoo J-S (2006) The proteome of Mannheimia succiniciproducens, a capnophilic rumen bacterium. Proteomics 6:3550–3566PubMedCrossRefGoogle Scholar
  41. Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS (2008) Fermentative butanol production by Clostridia. Biotechnol Bioeng 101:209–228PubMedCrossRefGoogle Scholar
  42. Lee JY, Jang YS, Lee J, Papoutsakis ET, Lee SY (2009) Metabolic engineering of Clostridium acetobutylicum M5 for highly selective butanol production. Biotechnol J 4:1432–1440PubMedCrossRefGoogle Scholar
  43. Lehmann D, Honicke D, Ehrenreich A, Schmidt M, Weuster-Botz D, Bahl H, Lutke-Eversloh T (2012) Modifying the product pattern of Clostridium acetobutylicum: physiological effects of disrupting the acetate and acetone formation pathways. Appl Microbiol Biotechnol 94:743–754PubMedCrossRefGoogle Scholar
  44. Mao S, Luo Y, Zhang T, Li J, Bao G, Zhu Y, Chen Z, Zhang Y, Li Y, Ma Y (2010) Proteome reference map and comparative proteomic analysis between a wild type Clostridium acetobutylicum DSM 1731 and its mutant with enhanced butanol tolerance and butanol yield. J Proteome Res 9:3046–3061PubMedCrossRefGoogle Scholar
  45. Mao S, Jia K, Zhang Y, Li Y (2012) Use of proteomic tools in microbial engineering for biofuel production. In: Cheng Q (ed) Microbial metabolic engineering. Vol. 834. Springer, New York, pp 137–151CrossRefGoogle Scholar
  46. Mermelstein LD, Welker NE, Bennett GN, Papoutsakis ET (1992) Expression of cloned homologous fermentative genes in Clostridium acetobutylicum ATCC 824. Biotechnology 10:190–195PubMedCrossRefGoogle Scholar
  47. Millat T, Janssen H, Bahl H, Fischer RJ, Wolkenhauer O (2013a) Integrative modelling of pH-dependent enzyme activity and transcriptomic regulation of the acetone–butanol–ethanol fermentation of Clostridium acetobutylicum in continuous culture. Microb Biotechnol 6:526–539PubMedCentralPubMedCrossRefGoogle Scholar
  48. Millat T, Janssen H, Thorn GJ, King JR, Bahl H, Fischer RJ, Wolkenhauer O (2013b) A shift in the dominant phenotype governs the pH-induced metabolic switch of Clostridium acetobutylicumin phosphate-limited continuous cultures. Appl Microbiol Biotechnol 97:6451–6466PubMedCrossRefGoogle Scholar
  49. Nicolaou SA, Gaida SM, Papoutsakis ET (2010) A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation. Metab Eng 12:307–331PubMedCrossRefGoogle Scholar
  50. Nolling J, Breton G, Omelchenko MV, Makarova KS, Zeng Q, Gibson R, Lee HM, Dubois J, Qiu D, Hitti J, Wolf YI, Tatusov RL, Sabathe F, Doucette-Stamm L, Soucaille P, Daly MJ, Bennett GN, Koonin EV, Smith DR (2001) Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol 183:4823–4838PubMedCentralPubMedCrossRefGoogle Scholar
  51. Papoutsakis ET (2008) Engineering solventogenic clostridia. Curr Opin Biotechnol 19:420–429PubMedCrossRefGoogle Scholar
  52. Rodionov DA, Mironov AA, Gelfand MS (2001) Transcriptional regulation of pentose utilisation systems in the Bacillus/Clostridium group of bacteria. FEMS Microbiol Lett 205:305–314PubMedCrossRefGoogle Scholar
  53. Rosen R, Becher D, Buttner K, Biran D, Hecker M, Ron EZ (2004) Highly phosphorylated bacterial proteins. Proteomics 4:3068–3077PubMedCrossRefGoogle Scholar
  54. Schaffer S, Isci N, Zickner B, Durre P (2002) Changes in protein synthesis and identification of proteins specifically induced during solventogenesis in Clostridium acetobutylicum. Electrophoresis 23:110–121PubMedCrossRefGoogle Scholar
  55. Schmidt M, Weuster-Botz D (2012) Reaction engineering studies of acetone–butanol–ethanol fermentation with Clostridium acetobutylicum. Biotechnol J 7:656–661PubMedCrossRefGoogle Scholar
  56. Seeger M, Osorio G, Jerez CA (1996) Phosphorylation of GroEL, DnaK and other proteins from Thiobacillus ferrooxidans grown under different conditions. FEMS Microbiol Lett 138:129–134PubMedCrossRefGoogle Scholar
  57. Servinsky MD, Kiel JT, Dupuy NF, Sund CJ (2010) Transcriptional analysis of differential carbohydrate utilization by Clostridium acetobutylicum. Microbiology 156:3478–3491PubMedCrossRefGoogle Scholar
  58. Sherman M, Goldberg AL (1992) Heat shock in Escherichia coli alters the protein-binding properties of the chaperonin groEL by inducing its phosphorylation. Nature 357:167–169PubMedCrossRefGoogle Scholar
  59. Sherman M, Goldberg AL (1994) Heat shock-induced phosphorylation of GroEL alters its binding and dissociation from unfolded proteins. J Biol Chem 269:31479–31483PubMedGoogle Scholar
  60. Sillers R, Al-Hinai MA, Papoutsakis ET (2009) Aldehyde–alcohol dehydrogenase and/or thiolase overexpression coupled with CoA transferase downregulation lead to higher alcohol titers and selectivity in Clostridium acetobutylicum fermentations. Biotechnol Bioeng 102:38–49PubMedCrossRefGoogle Scholar
  61. Speakman HB (1920) Gas production during the acetone and butyl alcohol fermentation of starch. J Biol Chem 43:401–411Google Scholar
  62. Steinhauer K, Jepp T, Hillen W, Stulke J (2002) A novel mode of control of Mycoplasma pneumoniae HPr kinase/phosphatase activity reflects its parasitic lifestyle. Microbiology 148:3277–3284PubMedGoogle Scholar
  63. Strader MB, Verberkmoes NC, Tabb DL, Connelly HM, Barton JW, Bruce BD, Pelletier DA, Davison BH, Hettich RL, Larimer FW, Hurst GB (2004) Characterization of the 70S ribosome from Rhodopseudomonas palustris using an integrated “top–down” and “bottom–up” mass spectrometric approach. J Proteome Res 3:965–978PubMedCrossRefGoogle Scholar
  64. Sullivan L, Bennett GN (2006) Proteome analysis and comparison of Clostridium acetobutylicum ATCC 824 and Spo0A strain variants. J Ind Microbiol Biotechnol 33:298–308PubMedCrossRefGoogle Scholar
  65. Tangney M, Galinier A, Deutscher J, Mitchell WJ (2003) Analysis of the elements of catabolite repression in Clostridium acetobutylicum ATCC 824. J Mol Microbiol Biotechnol 6:6–11PubMedCrossRefGoogle Scholar
  66. Tomas CA, Welker NE, Papoutsakis ET (2003) Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell's transcriptional program. Appl Environ Microbiol 69:4951–4965PubMedCentralPubMedCrossRefGoogle Scholar
  67. Tracy BP (2012) Improving butanol fermentation to enter the advanced biofuel market. mBio 3(6):e00518–12Google Scholar
  68. Tummala SB, Junne SG, Papoutsakis ET (2003) Antisense RNA downregulation of coenzyme A transferase combined with alcohol–aldehyde dehydrogenase overexpression leads to predominantly alcohologenic Clostridium acetobutylicum fermentations. J Bacteriol 185:3644–3653PubMedCentralPubMedCrossRefGoogle Scholar
  69. Wiesenborn DP, Rudolph FB, Papoutsakis ET (1989) Coenzyme A transferase from Clostridium acetobutylicum ATCC 824 and its role in the uptake of acids. Appl Environ Microbiol 55:323–329PubMedCentralPubMedGoogle Scholar
  70. Yen JY, Nazem-Bokaee H, Freedman BG, Athamneh AI, Senger RS (2013) Deriving metabolic engineering strategies from genome-scale modeling with flux ratio constraints. Biotechnol J 8:581–594PubMedCrossRefGoogle Scholar
  71. Zhao Y, Tomas CA, Rudolph FB, Papoutsakis ET, Bennett GN (2005) Intracellular butyryl phosphate and acetyl phosphate concentrations in Clostridium acetobutylicum and their implications for solvent formation. Appl Environ Microbiol 71:530–537PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Yu-Sin Jang
    • 1
  • Mee-Jung Han
    • 2
  • Joungmin Lee
    • 1
  • Jung Ae Im
    • 1
  • Yu Hyun Lee
    • 1
  • Eleftherios Terry Papoutsakis
    • 3
  • George Bennett
    • 4
  • Sang Yup Lee
    • 1
    • 5
    Email author
  1. 1.Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 plus program), BioProcess Engineering Research Center, Center for Systems and Synthetic BiotechnologyInstitute for the BioCentury, KAISTDaejeonSouth Korea
  2. 2.Department of Biomolecular and Chemical EngineeringDongyang UniversityGyeongbukSouth Korea
  3. 3.Department of Chemical Engineering and Delaware Biotechnology InstituteUniversity of DelawareNewarkUSA
  4. 4.Department of Biochemistry and Cell BiologyRice UniversityHoustonUSA
  5. 5.Bioinformatics Research Center, KAISTDaejeonSouth Korea

Personalised recommendations