Applied Microbiology and Biotechnology

, Volume 98, Issue 11, pp 4829–4837 | Cite as

Complex regulation of hydrolytic enzyme genes for cellulosic biomass degradation in filamentous fungi

  • Shuji TaniEmail author
  • Takashi Kawaguchi
  • Tetsuo Kobayashi


Filamentous fungi produce cellulolytic and hemicellulolytic enzymes in response to small inducer molecules liberated from cellulosic biomass. Enzyme production is mainly regulated at the level of transcription. The first transcription factor identified as being involved in cellulosic biomass degradation was XlnR, which mediates d-xylose-triggered induction of xylanolytic and cellulolytic genes in Aspergillus. XlnR has played the leading role for over a decade in studies aimed at clarification of gene regulation related to cellulosic biomass degradation. Very recently, several new transcription factors were identified, namely Clr-1/2 in Neurospora; ManR, McmA, and ClbR in Aspergillus; and BglR in Trichoderma, all of which participate in the regulation of cellulolytic and/or hemicellulolytic enzyme production. Furthermore, as well as the carbon sources available, other factors such as light signaling and anti-sense RNA accumulation have been shown to contribute to this regulation. Here, we review the recent advancements demonstrating that multiple factors coordinately regulate the expression of cellulosic biomass degrading enzyme genes.


CAZy genes Gene regulation Filamentous fungi Transcription factor Zn(II)2Cys6 binuclear cluster domain 


  1. Alper H, Moxley J, Nevoigt E, Fink G, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314(5805):1565–1568PubMedCrossRefGoogle Scholar
  2. Alper H, Stephanopoulos G (2007) Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab Eng 9(3):258–267PubMedCrossRefGoogle Scholar
  3. Aro N, Pakula T, Penttila M (2005) Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol Rev 29(4):719–739PubMedCrossRefGoogle Scholar
  4. Baker CR, Hanson-Smith V, Johnson AD (2013) Following gene duplication, paralog interference constrains transcriptional circuit evolution. Science 342(6154):104–108PubMedCentralPubMedCrossRefGoogle Scholar
  5. Battaglia E, Hansen SF, Leendertse A, Madrid S, Mulder H, Nikolaev I, de Vries RP (2011a) Regulation of pentose utilisation by arar, but not xlnr, differs in Aspergillus nidulans and Aspergillus niger. Appl Microbiol Biotechnol 91(2):387–397PubMedCentralPubMedCrossRefGoogle Scholar
  6. Battaglia E, Visser L, Nijssen A, van Veluw G, Wosten H, de Vries R (2011b) Analysis of regulation of pentose utilisation in Aspergillus niger reveals evolutionary adaptations in Eurotiales. Stud Mycol(69):31-38Google Scholar
  7. Berlin A, Maximenko V, Gilkes N, Saddler J (2007) Optimization of enzyme complexes for lignocellulose hydrolysis. Biotechnol Bioeng 97(2):287–296PubMedCrossRefGoogle Scholar
  8. Bernreiter A, Ramon A, Fernandez-Martinez J, Berger H, Araujo-Bazan L, Espeso EA, Pachlinger R, Gallmetzer A, Anderl I, Scazzocchio C, Strauss J (2007) Nuclear export of the transcription factor NirA is a regulatory checkpoint for nitrate induction in Aspergillus nidulans. Mol Cell Biol 27(3):791–802PubMedCentralPubMedCrossRefGoogle Scholar
  9. Brunner K, Lichtenauer AM, Kratochwill K, Delic M, Mach RL (2007) Xyr1 regulates xylanase but not cellulase formation in the head blight fungus Fusarium graminearum. Curr Genet 52(5–6):213–220PubMedCrossRefGoogle Scholar
  10. Colot HV, Park G, Turner GE, Ringelberg C, Crew CM, Litvinkova L, Weiss RL, Borkovich KA, Dunlap JC (2006) A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc Natl Acad Sci U S A 103(27):10352–10357PubMedCentralPubMedCrossRefGoogle Scholar
  11. Coradetti S, Craig J, Xiong Y, Shock T, Tian C, Glass N (2012) Conserved and essential transcription factors for cellulase gene expression in ascomycete fungi. Proc Natl Acad Sci U S A 109(19):7397–7402Google Scholar
  12. Coradetti ST, Xiong Y, Glass NL (2013) Analysis of a conserved cellulase transcriptional regulator reveals inducer-independent production of cellulolytic enzymes in Neurospora crassa. Microbiologyopen 2(4):595–609PubMedCentralPubMedCrossRefGoogle Scholar
  13. Coyle SM, Flores J, Lim WA (2013) Exploitation of latent allostery enables the evolution of new modes of MAP kinase regulation. Cell 154(4):875–887PubMedCentralPubMedCrossRefGoogle Scholar
  14. Darieva Z, Clancy A, Bulmer R, Williams E, Pic-Taylor A, Morgan B, Sharrocks A (2010) A competitive transcription factor binding mechanism determines the timing of late cell cycle-dependent gene expression. Mol Cell 38(1):29–40PubMedCentralPubMedCrossRefGoogle Scholar
  15. de Souza WR, de Gouvea PF, Savoldi M, Malavazi I, de Souza Bernardes LA, Goldman MH, de Vries RP, de Castro Oliveira JV, Goldman GH (2011) Transcriptome analysis of Aspergillus niger grown on sugarcane bagasse. Biotech Biofuels 4:40CrossRefGoogle Scholar
  16. Delmas S, Pullan ST, Gaddipati S, Kokolski M, Malla S, Blythe MJ, Ibbett R, Campbell M, Liddell S, Aboobaker A, Tucker GA, Archer DB (2012) Uncovering the genome-wide transcriptional responses of the filamentous fungus Aspergillus niger to lignocellulose using RNA sequencing. PLoS Genet 8(8):e1002875PubMedCentralPubMedCrossRefGoogle Scholar
  17. Endo Y, Yokoyama M, Morimoto M, Shirai K, Chikamatsu G, Kato N, Tsukagoshi N, Kato M, Kobayashi T (2008) Novel promoter sequence required for inductive expression of the Aspergillus nidulans endoglucanase gene eglA. Biosci Biotechnol Biochem 72(2):312–320PubMedCrossRefGoogle Scholar
  18. Goosen T, Bloemheuvel G, Gysler C, Debie D, Vandenbroek H, Swart K (1987) Transformation of Aspergillus niger using the homologous orotidine-5′-phosphate-decarboxylase gene. Curr Genet 11(6–7):499–503PubMedCrossRefGoogle Scholar
  19. Hasper A, Trindade L, van der Veen D, van Ooyen A, de Graaff L (2004) Functional analysis of the transcriptional activator XlnR from Aspergillus niger. Microbiology 150:1367–1375PubMedCrossRefGoogle Scholar
  20. Holmberg CI, Tran SE, Eriksson JE, Sistonen L (2002) Multisite phosphorylation provides sophisticated regulation of transcription factors. Trends Biochem Sci 27(12):619–627PubMedCrossRefGoogle Scholar
  21. Hrmova M, Petrakova E, Biely P (1991) Induction of cellulose-degrading and xylan-degrading enzyme-systems in Aspergillus terreus by homodisaccharides and heterodisaccharides composed of glucose and xylose. J Gen Microbiol 137:541–547PubMedCrossRefGoogle Scholar
  22. Johnston M (1987) Genetic evidence that zinc is an essential co-factor in the DNA binding domain of GAL4 protein. Nature 328(6128):353–355PubMedCrossRefGoogle Scholar
  23. Karaffa L, Fekete E, Gamauf C, Szentirmai A, Kubicek CP, Seiboth B (2006) D-Galactose induces cellulase gene expression in Hypocrea jecorina at low growth rates. Microbiology 152(Pt 5):1507–1514PubMedCrossRefGoogle Scholar
  24. Kawai T, Nakazawa H, Ida N, Okada H, Tani S, Sumitani J, Kawaguchi T, Ogasawara W, Morikawa Y, Kobayashi Y (2012) Analysis of the saccharification capability of high-functional cellulase JN11 for various pretreated biomasses through a comparison with commercially available counterparts. J Ind Microbiol Biotechnol 39(12):1741–1749PubMedCrossRefGoogle Scholar
  25. Keegan L, Gill G, Ptashne M (1986) Separation of DNA binding from the transcription-activating function of a eukaryotic regulatory protein. Science 231(4739):699–704PubMedCrossRefGoogle Scholar
  26. Kubicek CP, Messner R, Gruber F, Mach R, Kubicek-Pranz EM (1993) The Trichoderma cellulase regulatory puzzle; from the interior life of a secretory fungus. Enzyme Microb Technol 15(2):90–99Google Scholar
  27. Kubicek CP, Penttilä ME (1998) Regulation of production of plant polysaccharide degrading enzymes by Trichoderma. In: Harman GE, Kubicek CP (eds) Trichoderma and Gliocaldium. Enzymes biological control and commercial applications edn, vol 2. Taylor and Francis, London, pp 49–72Google Scholar
  28. Kumar PR, Yu Y, Sternglanz R, Johnston SA, Joshua-Tor L (2008) NADP regulates the yeast GAL induction system. Science 319(5866):1090–1092PubMedCentralPubMedCrossRefGoogle Scholar
  29. Kunitake E, Tani S, Sumitani J, Kawaguchi T (2011) Agrobacterium tumefaciens-mediated transformation of Aspergillus aculeatus for insertional mutagenesis. AMB Express 1(1):46PubMedCentralPubMedCrossRefGoogle Scholar
  30. Kunitake E, Tani S, Sumitani J, Kawaguchi T (2013) A novel transcriptional regulator, ClbR, controls the cellobiose- and cellulose-responsive induction of cellulase and xylanase genes regulated by two distinct signaling pathways in Aspergillus aculeatus. Appl Microbiol Biotechnol 97(5):2017–2028PubMedCrossRefGoogle Scholar
  31. Kurasawa T, Yachi M, Suto M, Kamagata Y, Takao S, Tomita F (1992) Induction of cellulase by gentiobiose and its sulfur-containing analog in Penicillium purpurogenum. Appl Environ Microbiol 58(1):106–110PubMedCentralPubMedGoogle Scholar
  32. Lan C, Lee HC, Tang S, Zhang L (2004) A novel mode of chaperone action: heme activation of Hap1 by enhanced association of Hsp90 with the repressed Hsp70-Hap1 complex. J Biol Chem 279(26):27607–27612PubMedCrossRefGoogle Scholar
  33. Lapidot M, Pilpel Y (2006) Genome-wide natural antisense transcription: coupling its regulation to its different regulatory mechanisms. EMBO Rep 7(12):1216–1222PubMedCentralPubMedCrossRefGoogle Scholar
  34. Lavy T, Kumar PR, He H, Joshua-Tor L (2012) The Gal3p transducer of the GAL regulon interacts with the Gal80p repressor in its ligand-induced closed conformation. Genes Dev 26(3):294–303PubMedCentralPubMedCrossRefGoogle Scholar
  35. Li Y, Chen G, Liu W (2010) Multiple metabolic signals influence GAL gene activation by modulating the interaction of Gal80p with the transcriptional activator Gal4p. Mol Microbiol 78(2):414–428PubMedCrossRefGoogle Scholar
  36. Liu G, Zhang L, Wei X, Zou G, Qin Y, Ma L, Li J, Zheng H, Wang S, Wang C, Xun L, Zhao G, Zhou Z, Qu Y (2013) Genomic and secretomic analyses reveal unique features of the lignocellulolytic enzyme system of Penicillium decumbens. PLoS One 8(2)Google Scholar
  37. Lockington R, Rodbourn L, Barnett S, Carter C, Kelly J (2002) Regulation by carbon and nitrogen sources of a family of cellulases in Aspergillus nidulans. Fungal Genet Biol 37(2):190–196PubMedCrossRefGoogle Scholar
  38. Ma J, Ptashne M (1987) A new class of yeast transcriptional activators. Cell 51(1):113–119PubMedCrossRefGoogle Scholar
  39. Makita T, Katsuyama Y, Tani S, Suzuki H, Kato N, Todd RB, Hynes MJ, Tsukagoshi N, Kato M, Kobayashi T (2009) Inducer-dependent nuclear localization of a Zn(II)2Cys6 transcriptional activator, AmyR, in Aspergillus nidulans. Biosci Biotechnol Biochem 73(2):391–399Google Scholar
  40. Malleret G, Haditsch U, Genoux D, Jones MW, Bliss TV, Vanhoose AM, Weitlauf C, Kandel ER, Winder DG, Mansuy IM (2001) Inducible and reversible enhancement of learning, memory, and long-term potentiation by genetic inhibition of calcineurin. Cell 104(5):675–686PubMedCrossRefGoogle Scholar
  41. Mandels M, Parrish FW, Reese ET (1962) Sophorose as an inducer of cellulase in Trichoderma viride. J Bacteriol 83:400–408PubMedCentralPubMedGoogle Scholar
  42. Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EG, Grigoriev IV, Harris P, Jackson M, Kubicek CP, Han CS, Ho I, Larrondo LF, de Leon AL, Magnuson JK, Merino S, Misra M, Nelson B, Putnam N, Robbertse B, Salamov AA, Schmoll M, Terry A, Thayer N, Westerholm-Parvinen A, Schoch CL, Yao J, Barabote R, Nelson MA, Detter C, Bruce D, Kuske CR, Xie G, Richardson P, Rokhsar DS, Lucas SM, Rubin EM, Dunn-Coleman N, Ward M, Brettin TS (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26(5):553–60PubMedCrossRefGoogle Scholar
  43. Marui J, Kitamoto N, Kato M, Kobayashi T, Tsukagoshi N (2002) Transcriptional activator, AoXlnR, mediates cellulose-inductive expression of the xylanolytic and cellulolytic genes in Aspergillus oryzae. FEBS Lett 528(1–3):279–282PubMedCrossRefGoogle Scholar
  44. Messenguy F, Dubois E (2003) Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development. Gene 316:1–321PubMedCrossRefGoogle Scholar
  45. Morikawa Y, Ohashi T, Mantani O, Okada H (1995) Cellulase induction by lactose in Trichoderma reesei PC-3-7. Appl Microbiol Biotechnol 44(1–2):106–111CrossRefGoogle Scholar
  46. Murakoshi Y, Makita T, Kato M, Kobayashi T (2012) Comparison and characterization of alpha-amylase inducers in Aspergillus nidulans based on nuclear localization of AmyR. Appl Microbiol Biotechnol 94(6):1629–1635PubMedCentralPubMedCrossRefGoogle Scholar
  47. Nakazawa H, Kawai T, Ida N, Shida Y, Kobayashi Y, Okada H, Tani S, Sumitani J, Kawaguchi T, Morikawa Y, Ogasawara W (2012) Construction of a recombinant Trichoderma reesei strain expressing Aspergillus aculeatus beta-glucosidase 1 for efficient biomass conversion. Biotechnol Bioeng 109(1):92–99Google Scholar
  48. Ninomiya Y, Suzuki K, Ishii C, Inoue H (2004) Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci U S A 101(33):12248–12253PubMedCentralPubMedCrossRefGoogle Scholar
  49. Nitta M, Furukawa T, Shida Y, Mori K, Kuhara S, Morikawa Y, Ogasawara W (2012) A new Zn(II)2Cys6-type transcription factor BglR regulates beta-glucosidase expression in Trichoderma reesei. Fungal Genet Biol 49(5):388–397Google Scholar
  50. Noguchi Y, Sano M, Kanamaru K, Ko T, Takeuchi M, Kato M, Kobayashi T (2009) Genes regulated by AoXlnR, the xylanolytic and cellulolytic transcriptional regulator, in Aspergillus oryzae. Appl Microbiol Biotechnol 85(1):141–154PubMedCrossRefGoogle Scholar
  51. Noguchi Y, Tanaka H, Kanamaru K, Kato M, Kobayashi T (2011) Xylose triggers reversible phosphorylation of XlnR, the fungal transcriptional activator of xylanolytic and cellulolytic genes in Aspergillus oryzae. Biosci Biotechnol Biochem 75(5):953–959PubMedCrossRefGoogle Scholar
  52. Ogawa M, Kobayashi T, Koyama Y (2012) ManR, a novel Zn(II)2Cys6 transcriptional activator, controls the beta-mannan utilization system in Aspergillus oryzae. Fungal Genet Biol 49(12):987–995Google Scholar
  53. Ogawa M, Kobayashi T, Koyama Y (2013) ManR, a transcriptional regulator of the beta-mannan utilization system, controls the cellulose utilization system in Aspergillus oryzae. Biosci Biotechnol Biochem 77(2):426–429PubMedGoogle Scholar
  54. Poulou M, Bell D, Bozonelos K, Alexiou M, Gavalas A, Lovell-Badge R, Remboutsika E (2010) Development of a chromosomally integrated metabolite-inducible Leu3p-alpha-IPM “off-on” gene switch. PLoS One 5(8):e12488PubMedCentralPubMedCrossRefGoogle Scholar
  55. Schmoll M, Tian C, Sun J, Tisch D, Glass N (2012) Unravelling the molecular basis for light modulated cellulase gene expression—the role of photoreceptors in Neurospora crassa. BMC Genomics 13:127PubMedCentralPubMedCrossRefGoogle Scholar
  56. Schuster A, Tisch D, Seidl-Seiboth V, Kubicek CP, Schmoll M (2012) Roles of protein kinase a and adenylate cyclase in light-modulated cellulase regulation in Trichoderma reesei. Appl Environ Microbiol 78(7):2168–2178PubMedCentralPubMedCrossRefGoogle Scholar
  57. Seiboth B, Karimi RA, Phatale PA, Linke R, Hartl L, Sauer DG, Smith KM, Baker SE, Freitag M, Kubicek CP (2012) The putative protein methyltransferase Lae1 controls cellulase gene expression in Trichoderma reesei. Mol Microbiol 84(6):1150–1164PubMedCentralPubMedCrossRefGoogle Scholar
  58. Shore P, Sharrocks A (1995) The MADS-box family of transcription factors. Eur J Biochem 229(1):1–13PubMedCrossRefGoogle Scholar
  59. Sil AK, Alam S, Xin P, Ma L, Morgan M, Lebo CM, Woods MP, Hopper JE (1999) The Gal3p-Gal80p-Gal4p transcription switch of yeast: Gal3p destabilizes the Gal80p-Gal4p complex in response to galactose and ATP. Mol Cell Biol 19(11):7828–7840PubMedCentralPubMedGoogle Scholar
  60. Somerville C (2006) The billion-ton biofuels vision. Science 312(5778):1277–1277PubMedCrossRefGoogle Scholar
  61. Stricker AR, Grosstessner-Hain K, Wurleitner E, Mach RL (2006) Xyr1 (xylanase regulator 1) regulates both the hydrolytic enzyme system and D-xylose metabolism in Hypocrea jecorina. Eukaryot Cell 5(12):2128–2137PubMedCentralPubMedCrossRefGoogle Scholar
  62. Stricker AR, Mach RL, de Graaff LH (2008) Regulation of transcription of cellulases- and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei). Appl Microbiol Biotechnol 78(2):211–220PubMedCrossRefGoogle Scholar
  63. Stricker AR, Steiger MG, Mach RL (2007) Xyr1 receives the lactose induction signal and regulates lactose metabolism in Hypocrea jecorina. FEBS Lett 581(21):3915–3920PubMedCrossRefGoogle Scholar
  64. Sun J, Glass NL (2011) Identification of the CRE-1 cellulolytic regulon in Neurospora crassa. PLoS One 6(9):e25654PubMedCentralPubMedCrossRefGoogle Scholar
  65. Sze JY, Woontner M, Jaehning JA, Kohlhaw GB (1992) In vitro transcriptional activation by a metabolic intermediate: activation by Leu3 depends on alpha-isopropylmalate. Science 258(5085):1143–1145PubMedCrossRefGoogle Scholar
  66. Tani S, Kanamasa S, Sumitani J, Arai M, Kawaguchi T (2012) XlnR-independent signaling pathway regulates both cellulase and xylanase genes in response to cellobiose in Aspergillus aculeatus. Curr Genet 58(2):93–104PubMedCrossRefGoogle Scholar
  67. Tilburn J, Sarkar S, Widdick D, Espeso E, Orejas M, Mungroo J, Penalva M, Arst H (1995) The Aspergillus PacC zinc-finger transcription factor mediates regulation of both acid-expressed and alkaline-expressed genes by ambient pH. EMBO J 14(4):779–790PubMedCentralPubMedGoogle Scholar
  68. Todd R, Andrianopoulos A (1997) Evolution of a fungal regulatory gene family: the Zn(II)2Cys6 binuclear cluster DNA binding motif. Fungal Genet Biol 21(3):388–405Google Scholar
  69. van Peij N, Gielkens M, de Vries R, Visser J, de Graaff L (1998) The transcriptional activator XlnR regulates both xylanolytic and endoglucanase gene expression in Aspergillus niger. Appl Environ Microbiol 64(10):3615–3619PubMedCentralPubMedGoogle Scholar
  70. Wang D, Zheng F, Holmberg S, Kohlhaw GB (1999) Yeast transcriptional regulator Leu3p. Self-masking, specificity of masking, and evidence for regulation by the intracellular level of Leu3p. J Biol Chem 274(27):19017–19024PubMedCrossRefGoogle Scholar
  71. Yamakawa Y, Endo Y, Li N, Yoshizawa M, Aoyama M, Watanabe A, Kanamaru K, Kato M, Kobayashi T (2013) Regulation of cellulolytic genes by McmA, the SRF-MADS box protein in Aspergillus nidulans. Biochem Biophys Res Commun 431(4):777–782PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Shuji Tani
    • 1
    Email author
  • Takashi Kawaguchi
    • 1
  • Tetsuo Kobayashi
    • 2
  1. 1.Graduate School of Life and Environmental SciencesOsaka Prefecture UniversitySakaiJapan
  2. 2.Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural SciencesNagoya UniversityNagoyaJapan

Personalised recommendations