Applied Microbiology and Biotechnology

, Volume 99, Issue 1, pp 77–87 | Cite as

Kinetic and stoichiometric characterization of anoxic sulfide oxidation by SO-NR mixed cultures from anoxic biotrickling filters

  • Mabel Mora
  • Maikel Fernández
  • José Manuel Gómez
  • Domingo Cantero
  • Javier Lafuente
  • Xavier Gamisans
  • David Gabriel
Environmental biotechnology

Abstract

Monitoring the biological activity in biotrickling filters is difficult since it implies estimating biomass concentration and its growth yield, which can hardly be measured in immobilized biomass systems. In this study, the characterization of a sulfide-oxidizing nitrate-reducing biomass obtained from an anoxic biotrickling filter was performed through the application of respirometric and titrimetric techniques. Previously, the biomass was maintained in a continuous stirred tank reactor under steady-state conditions resulting in a growth yield of 0.328 ± 0.045 g VSS/g S. To properly assess biological activity in respirometric tests, abiotic assays were conducted to characterize the stripping of CO2 and sulfide. The global mass transfer coefficient for both processes was estimated. Subsequently, different respirometric tests were performed: (1) to solve the stoichiometry related to the autotrophic denitrification of sulfide using either nitrate or nitrite as electron acceptors, (2) to evaluate the inhibition caused by nitrite and sulfide on sulfide oxidation, and (3) to propose, calibrate, and validate a kinetic model considering both electron acceptors in the overall anoxic biodesulfurization process. The kinetic model considered a Haldane-type equation to describe sulfide and nitrite inhibitions, a non-competitive inhibition to reflect the effect of sulfide on the elemental sulfur oxidation besides single-step denitrification since no nitrite was produced during the biological assays.

Keywords

Hydrogen sulfide Biotrickling filter SO-NR culture Kinetics and stoichiometry Respirometry Titrimetry 

Notes

Acknowledgments

The Spanish government provided financial support through the CICYT project CTM2009-14338-C03 and CTM2012-37927-C03. The Department of Chemical Engineering at UAB (Universitat Autònoma de Barcelona) is a unit of Biochemical Engineering of the Xarxa de Referència en Biotecnologia de Catalunya (XRB), Generalitat de Catalunya. The authors are grateful to Martin Ramirez, Antonio Valle, and Fernando Almengló for their great contribution to this work.

Supplementary material

253_2014_5688_MOESM1_ESM.pdf (46 kb)
ESM 1(PDF 46 kb)

References

  1. Almenglo F, Ramírez M, Gómez JM, Cantero D (2013) H2S removal from biogás by a pilot anoxic biotrickling filter. A comparison between cocurrent and countercurrent flow operation mode increasing the loading rate. In: 5th IWA Specialized Conference on Odors and Air Emissions Jointly Held With 10th Conference on Biofiltration for Air Pollution Control, San Francisco, California, USAGoogle Scholar
  2. An S, Tang K, Nemati M (2010) Simultaneous biodesulphurization and denitrification using an oil reservoir microbial culture: effects of sulphide loading rate and sulphide to nitrate loading ratio. Water Res 44(5):1531–1541. doi:10.1016/j.watres.2009.10.037 PubMedCrossRefGoogle Scholar
  3. APHA-AWWA-WPCF (2005) Standard methods for the examination of water and wastewater. American Publication Health Association, WashingtonGoogle Scholar
  4. Artiga P, Gonzalez F, Mosquera-Corral A, Campos JL, Garrido JM, Ficara E, Mendez R (2005) Multiple analysis reprogrammable titration analyser for the kinetic characterization of nitrifying and autotrophic denitrifying biomass. Biochem Eng J 26:176–183. doi:10.1016/j.bej.2005.04.017 CrossRefGoogle Scholar
  5. Campos JL, Carvalho S, Portela R, Mosquera-Corral A, Mendez R (2008) Kinetics of denitrification using sulphur compounds: effects of S/N ratio, endogenous and exogenous compounds. Bioresour Technol 99:1293–1299. doi:10.1016/j.biortech.2007.02.007 PubMedCrossRefGoogle Scholar
  6. Can-Dogan E, Turker M, Dagasan L, Arslan A (2010) Sulfide removal from industrial wastewaters by lithotrophic denitrification using nitrate as an electron acceptor. Water Sci Technol 62:2286–2293. doi:10.2166/wst.2010.545 PubMedCrossRefGoogle Scholar
  7. Cardoso RB, Sierra-Alvarez R, Rowlette P, Flores ER, Gomez J, Field JA (2006) Sulfide oxidation under chemolithoautotrophic denitrifying conditions. Biotechnol Bioeng 95:1148–1157. doi:10.1002/Bit.21084 PubMedCrossRefGoogle Scholar
  8. Cox HHJ, Deshusses MA (1998) Biological waste air treatment in biotrickling filters. Curr Opin Biotechnol 9:256–262. doi:10.1016/S0958-1669(98)80056-6 PubMedCrossRefGoogle Scholar
  9. Decostere B, Janssens N, Alvarado A, Maere T, Goethals P, Van Hulle SWH, Nopens I (2013) A combined respirometer-titrimeter for the determination of microalgae kinetics: experimental data collection and modelling. Chem Eng J 222:85–93. doi:10.1016/j.cej.2013.01.103 CrossRefGoogle Scholar
  10. Dogan EC, Turker M, Dagasan L, Arslan A (2012) Simultaneous sulfide and nitrite removal from industrial wastewaters under denitrifying conditions. Biotechnol Bioproc Eng 17:661–668. doi:10.1007/s12257-011-0677-3 CrossRefGoogle Scholar
  11. Fajardo C, Mora M, Fernández I, Mosquera-Corral A, Campos JL, Méndez R (2014) Cross effect of temperature, pH and free ammonia on autotrophic denitrification process with sulphide as electron donor. Chemosphere. doi:10.1016/j.chemosphere.2013.10.02 Google Scholar
  12. Fernandez M, Ramirez M, Perez RM, Gomez JM, Canter D (2013) Hydrogen sulphide removal from biogas by an anoxic biotrickling filter packed with Pall rings. Chem Eng J 225:456–463. doi:10.1016/j.cej.2013.04.020 CrossRefGoogle Scholar
  13. Fortuny M, Baeza JA, Gamisans X, Casas C, Lafuente J, Deshusses MA, Gabriel D (2008) Biological sweetening of energy gases mimics in biotrickling filters. Chemosphere 71:10–17. doi:10.1016/j.chemosphere.2007.10.072 PubMedCrossRefGoogle Scholar
  14. Gadekar S, Nemati M, Hill GA (2006) Batch and continuous biooxidation of sulphide by Thiomicrospira sp. CVO: reaction kinetics and stoichiometry. Water Res 40:2436–2446. doi:10.1016/j.watres.2006.04.007 PubMedCrossRefGoogle Scholar
  15. Gonzalez-Sanchez A, Tomas M, Dorado AD, Gamisans X, Guisasola A, Lafuente J, Gabriel D (2009) Development of a kinetic model for elemental sulfur and sulfate formation from the autotrophic sulfide oxidation using respirometric techniques. Water Sci Technol 59:1323–1329. doi:10.2166/Wst.2009.110 PubMedCrossRefGoogle Scholar
  16. Guisasola A, Vargas M, Marcelino M, Lafuente J, Casas C, Baeza JA (2007) On-line monitoring of the enhanced biological phosphorus removal process using respirometry and titrimetry. Biochem Eng J 35:371–379. doi:10.1016/j.bej.2007.02.001 CrossRefGoogle Scholar
  17. Heijnen JJ (2002) Bioenergetics of microbial growth encyclopedia of bioprocess technology. Wiley, New YorkGoogle Scholar
  18. Kleerebezem R, Mendez R (2002) Autotrophic denitrification for combined hydrogen sulfide removal from biogas and post-denitrification. Water Sci Technol 45:349–356PubMedGoogle Scholar
  19. Kristensen HG, Jorgensen PE, Henze M (1992) Characterization of functional microorganism groups and substrate in activated sludge and wastewater by AUR, NUR and OUR. Water Sci Technol 25:43–57Google Scholar
  20. López LR, Mora M, Gamisans X, Gabriel D (2013) Application of respirometry and titrimetry under anoxic conditions for the characterization of the carbon dioxide stripping and biological activity of a SO-NR consortium. In: 5th IWA Specialized Conference on Odors and Air Emissions Jointly Held With 10th Conference on Biofiltration for Air Pollution Control, San Francisco, California, USAGoogle Scholar
  21. Manconi I, Carucci A, Lens P (2007) Combined removal of sulfur compounds and nitrate by autotrophic denitrification in bioaugmented activated sludge system. Biotechnol Bioeng 98:551–560. doi:10.1002/Bit.21383 PubMedCrossRefGoogle Scholar
  22. Marcelino M, Guisasola A, Baeza JA (2009) Experimental assessment and modelling of the proton production linked to phosphorus release and uptake in EBPR systems. Water Res 43:2431–2440. doi:10.1016/j.watres.2009.03.003 PubMedCrossRefGoogle Scholar
  23. Martin RW, Li HB, Mihelcic JR, Crittenden JC, Lueking DR, Hatch CR, Ball P (2002) Optimization of biofiltration for odor control: model calibration, validation, and applications. Water Environ Res 74:17–27. doi:10.2175/106143002x139712 PubMedCrossRefGoogle Scholar
  24. McMurray SH, Meyer RL, Zeng RJ, Yuan Z, Keller J (2004) Integration of titrimetric measurement, off-gas analysis and NOx- biosensors to investigate the complexity of denitrification processes. Water Sci Technol 50:135–141PubMedGoogle Scholar
  25. Mora M, Guisasola A, Gamisans X, Gabriel D (2014) Examining thiosulfate-driven autotrophic denitrification through respirometry. Chemosphere (in press)Google Scholar
  26. Munz G, Gori R, Mori G, Lubello C (2009) Monitoring biological sulphide oxidation processes using combined respirometric and titrimetric techniques. Chemosphere 76:644–650. doi:10.1016/j.chemosphere.2009.04.039 PubMedCrossRefGoogle Scholar
  27. Reyes-Avila JS, Razo-Flores E, Gomez J (2004) Simultaneous biological removal of nitrogen, carbon and sulfur by denitrification. Water Res 38:3313–3321. doi:10.1016/j.watres.2004.04.035 PubMedCrossRefGoogle Scholar
  28. Roels JA (1983) Energetics and kinetics in biotechnology. Elsevier, AmsterdamGoogle Scholar
  29. Sin G, Vanrolleghem PA (2007) Extensions to modeling aerobic carbon degradation using combined respirometric-titrimetric measurements in view of activated sludge model calibration. Water Res 41:3345–3358. doi:10.1016/j.watres.2007.03.029 PubMedCrossRefGoogle Scholar
  30. Soreanu G, Beland M, Falletta P, Edmonson K, Seto P (2008) Laboratory pilot scale study for H2S removal from biogas in an anoxic biotrickling filter. Water Sci Technol 57:201–207. doi:10.2166/Wst.2008.023 PubMedCrossRefGoogle Scholar
  31. Soreanu G, Beland M, Falletta P, Ventresca B, Seto P (2009) Evaluation of different packing media for anoxic H2S control in biogas. Environ Technol 30:1249–1259. doi:10.1080/09593330902998314 PubMedCrossRefGoogle Scholar
  32. Soto O, Aspe E, Roeckel M (2007) Kinetics of cross-inhibited denitrification of a high load wastewater. Enzym Microb Technol 40:1627–1634. doi:10.1016/j.enzmictec.2006.11.014 CrossRefGoogle Scholar
  33. Spanjers H, Vanrolleghem P (1995) Respirometry as a tool for rapid characterization of waste-water and activated-sludge. Water Sci Technol 31:105–114. doi:10.1016/0273-1223(95)00184-O CrossRefGoogle Scholar
  34. Spanjers H, Vanrolleghem P, Olsson G, Dold P (1996) Respirometry in control of the activated sludge process. Water Sci Technol 34:117–126. doi:10.1016/0273-1223(96)84211-9 CrossRefGoogle Scholar
  35. Syed M, Soreanu G, Falletta P, Béland M (2006) Removal of hydrogen sulfide from gas streams using biological processes—a review. Can Biosyst Eng 48:2.1–2.14Google Scholar
  36. Tora JA, Lafuente J, Baeza JA, Carrera J (2010) Combined effect of inorganic carbon limitation and inhibition by free ammonia and free nitrous acid on ammonia oxidizing bacteria. Bioresour Technol 101:6051–6058. doi:10.1016/j.biortech.2010.03.005 PubMedCrossRefGoogle Scholar
  37. Vaiopoulou E, Melidis P, Aivasidis A (2005) Sulfide removal in wastewater from petrochemical industries by autotrophic denitrification. Water Res 39:4101–4109. doi:10.1016/j.watres.2005.07.022 PubMedCrossRefGoogle Scholar
  38. Wild D, Vonschulthess R, Gujer W (1995) Structured modeling of denitrification intermediates. Water Sci Technol 31:45–54. doi:10.1016/0273-1223(95)00179-Q CrossRefGoogle Scholar
  39. Yavuz B, Turker M, Engin GO (2007) Autotrophic removal of sulphide from industrial wastewaters using oxygen and nitrate as electron acceptors. Environ Eng Sci 24:457–470. doi:10.1089/ees.2006.0068 CrossRefGoogle Scholar
  40. Young JC, Cowan RM (2004) Respirometry for environmental science and engineering. SJ Enterprises, SpringdaleGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Mabel Mora
    • 1
  • Maikel Fernández
    • 2
  • José Manuel Gómez
    • 2
  • Domingo Cantero
    • 2
  • Javier Lafuente
    • 1
  • Xavier Gamisans
    • 3
  • David Gabriel
    • 1
  1. 1.Department of Chemical Engineering, School of EngineeringUniversitat Autònoma de BarcelonaBellaterraSpain
  2. 2.Department of Chemical Engineering and Food Technologies, Faculty of SciencesUniversity of CádizPuerto RealSpain
  3. 3.Department of Mining Engineering and Natural ResourcesUniversitat Politècnica de CatalunyaManresaSpain

Personalised recommendations