Applied Microbiology and Biotechnology

, Volume 98, Issue 14, pp 6353–6364 | Cite as

Modulation of peanut-induced allergic immune responses by oral lactic acid bacteria-based vaccines in mice

  • Chengcheng Ren
  • Qiuxiang Zhang
  • Gang Wang
  • Chunqing Ai
  • Mengsha Hu
  • Xiaoming Liu
  • Fengwei Tian
  • Jianxin Zhao
  • Yongquan Chen
  • Miao Wang
  • Hao Zhang
  • Wei Chen
Applied genetics and molecular biotechnology

Abstract

Peanut allergy (PNA) has becoming a non-negligible health concern worldwide. Thus far, allergen-specific immunotherapy aimed at inducing mucosal tolerance has widely been regarded as a major management strategy for PNA. The safety profiles and the intrinsic probiotic properties of lactic acid bacteria (LAB) render them attractive delivery vehicles for mucosal vaccines. In the present study, we exploited genetically modified Lactococcus lactis to produce peanut allergen Ara h 2 via different protein-targeting systems and their immunomodulatory potency for allergic immune responses in mice were investigated. By comparison with the strain expressing the cytoplasmic form of Ara h 2 (LL1), the strains expressing the secreted and anchored forms of Ara h 2 (LL2 and LL3) were more potent in redirecting a Th2-polarized to a non-allergic Th1 immune responses. Induction of SIgA and regulatory T cells were also observed at the local levels by orally administration of recombinant L. lactis. Our results indicate that allergen-producing L. lactis strains modulated allergic immune responses and may be developed as promising mucosal vaccines for managing allergic diseases.

Keywords

Peanut allergy Immunomodulation Oral tolerance Lactococcus lactis 

References

  1. Adel-Patient K, Ah-Leung S, Creminon C, Nouaille S, Chatel JM, Langella P, Wal JM (2005) Oral administration of recombinant Lactococcus lactis expressing bovine β-lactoglobulin partially prevents mice from sensitization. Clin Exp Allergy 35(4):539–546PubMedCrossRefGoogle Scholar
  2. Allez M, Mayer L (2004) Regulatory T cells. Peace keepers in the gut. Inflamm Bowel Dis 10(5):666–676PubMedCrossRefGoogle Scholar
  3. Al-Muhsen S, Clarke AE, Kagan RS (2003) Peanut allergy: an overview. Can Med Assoc J 168(10):1279–1285Google Scholar
  4. Asadullah K, Sterry W, Volk HD (2003) Interleukin-10 therapy—review of a new approach. Pharmacol Rev 55(2):241–269PubMedCrossRefGoogle Scholar
  5. Bahey-El-Din M, Casey PG, Griffin BT, Gahan CGM (2008) Lactococcus lactis-expressing listeriolysin O (LLO) provides protection and specific CD8+ T cells against Listeria monocytogenes in the murine infection model. Vaccine 26(41):5304–5314PubMedCrossRefGoogle Scholar
  6. Böttcher MF, Häggström P, Björkstén B, Jenmalm MC (2002) Total and allergen-specific immunoglobulin A levels in saliva in relation to the development of allergy in infants up to 2 years of age. Clin Exp Allergy 32(9):1293–1298PubMedCrossRefGoogle Scholar
  7. Braat H, Rottiers P, Hommes DW, Huyghebaert N, Remaut E, Remon JP, van Deventer SJH, Neirynck S, Peppelenbosch MP, Steidler L (2006) A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn’s disease. Clin Gastroenterol Hepatol 4(6):754–759PubMedCrossRefGoogle Scholar
  8. Burks AW (2008) Peanut allergy. Lancet 371(9623):1538–1546PubMedCrossRefGoogle Scholar
  9. Burks AW, Williams LW, Connaughton C, Cockrell G, O'Brien TJ, Helm RM (1992) Identification and characterization of a second major peanut allergen, Ara h II, with use of the sera of patients with atopic dermatitis and positive peanut challenge. J Allergy Clin Immunol 90(6, Part 1):962–969PubMedCrossRefGoogle Scholar
  10. Capobianco F, Butteroni C, Barletta B, Corinti S, Afferni C, Tinghino R, Boirivant M, Di Felice G (2008) Oral sensitization with shrimp tropomyosin induces in mice allergen-specific IgE, T cell response and systemic anaphylactic reactions. Int Immunol 20(8):1077–1086PubMedCrossRefGoogle Scholar
  11. Cheun HI, Kawamoto K, Hiramatsu M, Tamaoki H, Shirahata T, Igimi S, Makino SI (2004) Protective immunity of SpaA-antigen producing Lactococcus lactis against Erysipelothrix rhusiopathiae infection. J Appl Microbiol 96(6):1347–1353PubMedCrossRefGoogle Scholar
  12. Coffman RLVK, Scott P, Chatelain R (1991) Role of cytokines in the differentiation of CD4+ T-cell subsets in vivo. Immunol Rev 123:189–207PubMedCrossRefGoogle Scholar
  13. Cortes-Perez NG, Lefèvre F, Corthier G, Adel-Patient K, Langella P, Bermúdez-Humarán LG (2007) Influence of the route of immunization and the nature of the bacterial vector on immunogenicity of mucosal vaccines based on lactic acid bacteria. Vaccine 25(36):6581–6588PubMedCrossRefGoogle Scholar
  14. Daniel C, Repa A, Wild C, Pollak A, Pot B, Breiteneder H, Wiedermann U, Mercenier A (2006) Modulation of allergic immune responses by mucosal application of recombinant lactic acid bacteria producing the major birch pollen allergen Bet v 1. Allergy 61(7):812–819PubMedCrossRefGoogle Scholar
  15. Daniel C, Sebbane F, Poiret S, Goudercourt D, Dewulf J, Mullet C, Simonet M, Pot B (2009) Protection against Yersinia pseudotuberculosis infection conferred by a Lactococcus lactis mucosal delivery vector secreting LcrV. Vaccine 27(8):1141–1144PubMedCrossRefGoogle Scholar
  16. Foligne B, Dessein R, Marceau M, Poiret S, Chamaillard M, Pot B, Simonet M, Daniel C (2007) Prevention and treatment of colitis with Lactococcus lactis secreting the immunomodulatory Yersinia LcrV protein. Gastroenterology 133(3):862–874PubMedCrossRefGoogle Scholar
  17. Frossard CP, Steidler L, Eigenmann PA (2007) Oral administration of an IL-10–secreting Lactococcus lactis strain prevents food-induced IgE sensitization. J Allergy Clin Immunol 119(4):952–959PubMedCrossRefGoogle Scholar
  18. Gasson MJ (1983) Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J Bacteriol 154(1):1–9Google Scholar
  19. Hazebrouck S, Oozeer R, Adel-Patient K, Langella P, Rabot S, Wal J-M, Corthier G (2006) Constitutive delivery of bovine β-lactoglobulin to the digestive tracts of gnotobiotic mice by engineered Lactobacillus casei. J Appl Microbiol 72(12):7460–7467CrossRefGoogle Scholar
  20. Hazebrouck S, Przybylski-Nicaise L, Ah-Leung S, Adel-Patient K, Corthier G, Langella P, Wal JM (2009) Influence of the route of administration on immunomodulatory properties of bovine β-lactoglobulin-producing Lactobacillus casei. Vaccine 27(42):5800–5805PubMedCrossRefGoogle Scholar
  21. Holo H, Nes IF (1989) High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. J Appl Microbiol 55(12):3119–3123Google Scholar
  22. Huibregtse IL, Snoeck V, de Creus A, Braat H, de Jong EC, van Deventer SJH, Rottiers P (2007) Induction of ovalbumin-specific tolerance by oral administration of Lactococcus lactis secreting ovalbumin. Gastroenterology 133(2):517–528PubMedCrossRefGoogle Scholar
  23. Husain Z, Schwartz RA (2012) Peanut allergy: an increasingly common life-threatening disorder. J Am Acad Dermatol 66(1):136–143PubMedCrossRefGoogle Scholar
  24. Jing H, Yong L, Haiyan L, Yanjun M, Yun X, Yu Z, Taiming L, Rongyue C, Liang J, Jie W, Li Z, Jingjing L (2011) Oral administration of Lactococcus lactis delivered heat shock protein 65 attenuates atherosclerosis in low-density lipoprotein receptor-deficient mice. Vaccine 29(24):4102–4109PubMedCrossRefGoogle Scholar
  25. Josefowicz SZ, Lu LF, Rudensky AY (2012) Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol 30:531–564PubMedCrossRefGoogle Scholar
  26. Koppelman SJ, Knol EF, Vlooswijk RAA, Wensing M, Knulst AC, Hefle SL, Gruppen H, Piersma S (2003) Peanut allergen Ara h 3: isolation from peanuts and biochemical characterization. Allergy 58(11):1144–1151PubMedCrossRefGoogle Scholar
  27. Koppelman SJ, Wensing M, Ertmann M, Knulst AC, Knol EF (2004) Relevance of Ara h1, Ara h2 and Ara h3 in peanut-allergic patients, as determined by immunoglobulin E Western blotting, basophil–histamine release and intracutaneous testing: Ara h2 is the most important peanut allergen. Clin Exp Allergy 34(4):583–590PubMedCrossRefGoogle Scholar
  28. Kui Wu YB, Kun S, Changzheng W (2007) IL-10-producing type 1 regulatory T cells and allergy. Cell Mol Immunol 4(4):269–275PubMedGoogle Scholar
  29. Kuipers OP, Ruyter PG de, Kleerebezem M, Vos WM de (1998) Quorum sensing-controlled gene expression in lactic acid bacteria. J Biotechnol 64(1):15–21Google Scholar
  30. Le Loir Y, Azevedo V, Oliveira S, Freitas D, Miyoshi A, Bermúdez-Humarán L, Nouaille S, Ribeiro L, Leclercq S, Gabriel J, Guimaraes V, Oliveira M, Charlier C, Gautier M, Langella P (2005) Protein secretion in Lactococcus lactis : an efficient way to increase the overall heterologous protein production. Microb Cell Fact 4(1):1–13CrossRefGoogle Scholar
  31. Li X-M, Srivastava K, Grishin A, Huang C-K, Schofield B, Burks W, Sampson HA (2003a) Persistent protective effect of heat-killed Escherichia coli producing “engineered”, recombinant peanut proteins in a murine model of peanut allergy. J Allergy Clin Immunol 112(1):159–167Google Scholar
  32. Li X-M, Srivastava K, Huleatt JW, Bottomly K, Burks AW, Sampson HA (2003b) Engineered recombinant peanut protein and heat-killed Listeria monocytogenes coadministration protects against peanut-induced anaphylaxis in a murine model. J Immunol 170(6):3289–3295PubMedCrossRefGoogle Scholar
  33. Mannam P, Jones KF, Geller BL (2004) Mucosal vaccine made from live, recombinant Lactococcus lactis protects mice against pharyngeal infection with Streptococcus pyogenes. Infect Immun 72(6):3444–3450PubMedCentralPubMedCrossRefGoogle Scholar
  34. Marelli B, Perez AR, Banchio C, de Mendoza D, Magni C (2011) Oral immunization with live Lactococcus lactis expressing rotavirus VP8* subunit induces specific immune response in mice. J Virol Methods 175(1):28–37PubMedCrossRefGoogle Scholar
  35. Marinaro M, Boyaka PN, Finkelman FD, Kiyono H, Jackson RJ, Jirillo E, McGhee JR (1997) Oral but Not Parenteral Interleukin (IL)-12 Redirects T Helper 2 (Th2)-type responses to an oral vaccine without altering mucosal IgA responses. J Exp Med 185(3):415–428PubMedCentralPubMedCrossRefGoogle Scholar
  36. Meijerink M, Wells JM, Taverne N, de Zeeuw Brouwer M-L, Hilhorst B, Venema K, van Bilsen J (2012) Immunomodulatory effects of potential probiotics in a mouse peanut sensitization model. FEMS Immunol Med Microbiol 65(3):488–496PubMedCrossRefGoogle Scholar
  37. Mierau I, Kleerebezem M (2005) Ten years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl Microbiol Biotechnol 68(6):705–717Google Scholar
  38. Mondoulet L, Dioszeghy V, Larcher T, Ligouis M, Dhelft V, Puteaux E, Cherel Y, Letourneur F, Dupont C, Benhamou P-H (2012) Epicutaneous immunotherapy (EPIT) blocks the allergic esophago-gastro-enteropathy induced by sustained oral exposure to peanuts in sensitized mice. PLoS ONE 7(2):e31967PubMedCentralPubMedCrossRefGoogle Scholar
  39. Mosmann TR, Coffman RL (1989) TH1 and TH2 Cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 7:145–173PubMedCrossRefGoogle Scholar
  40. Neutra MR, Kozlowski PA (2006) Mucosal vaccines: the promise and the challenge. Nat Rev Immunol 6(2):148–158PubMedCrossRefGoogle Scholar
  41. Perez CA, Eichwald C, Burrone O, de Mendoza D (2005) Rotavirus vp7 antigen produced by Lactococcus lactis induces neutralizing antibodies in mice. J Appl Microbiol 99(5):1158–1164PubMedCrossRefGoogle Scholar
  42. Piard JC, Hautefort I, Fischetti VA, Ehrlich SD, Fons M, Gruss A (1997) Cell wall anchoring of the Streptococcus pyogenes M6 protein in various lactic acid bacteria. J Bacteriol 179(9):3068–3072PubMedCentralPubMedGoogle Scholar
  43. Ramasamy R, Yasawardena S, Zomer A, Venema G, Kok J, Leenhouts K (2006) Immunogenicity of a malaria parasite antigen displayed by Lactococcus lactis in oral immunisations. Vaccine 24(18):3900–3908PubMedCrossRefGoogle Scholar
  44. Schwarzer M, Repa A, Daniel C, Schabussova I, Hrncir T, Pot B, Stepankova R, Hudcovic T, Pollak A, Tlaskalova-Hogenova H, Wiedermann U, Kozakova H (2011) Neonatal colonization of mice with Lactobacillus plantarum producing the aeroallergen Bet v 1 biases towards Th1 and T-regulatory responses upon systemic sensitization. Allergy 66(3):368–375PubMedCrossRefGoogle Scholar
  45. Sheikh SB, Burks AW (2013) Recent advances in the diagnosis and therapy of peanut allergy. Expert Rev Clin Immunol 9(6):551–560PubMedCrossRefGoogle Scholar
  46. Sicherer SH, Muñoz-Furlong A, Sampson HA (2003) Prevalence of peanut and tree nut allergy in the United States determined by means of a random digit dial telephone survey: a 5-year follow-up study. J Allergy Clin Immunol 112(6):1203–1207PubMedCrossRefGoogle Scholar
  47. Skolnick HS, Conover-Walker MK, Koerner CB, Sampson HA, Burks W, Wood RA (2001) The natural history of peanut allergy. J Allergy Clin Immunol 107(2):367–374PubMedCrossRefGoogle Scholar
  48. Srivastava KD, Li X-M, King N, Stanley S, Bannon GA, Burks W, Sampson HA (2002) Immunotherapy with modified peanut allergens in a murine model of peanut allergy. J Allergy Clin Immunol 109(1, Supplement 1):S287CrossRefGoogle Scholar
  49. Srivastava KD, Qu C, Zhang T, Goldfarb J, Sampson HA, Li X-M (2009) Food Allergy Herbal Formula-2 silences peanut-induced anaphylaxis for a prolonged posttreatment period via IFN-γ–producing CD8+ T cells. J Allergy Clin Immunol 123(2):443–451PubMedCrossRefGoogle Scholar
  50. Steidler L, Hans W, Schotte L, Neirynck S, Obermeier F, Falk W, Fiers W, Remaut E (2000) Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289(5483):1352–1355PubMedCrossRefGoogle Scholar
  51. Strait RT, Morris SC, Finkelman FD (2006) IgG-blocking antibodies inhibit IgE-mediated anaphylaxis in vivo through both antigen interception and FcγRIIb cross-linking. J Clin Invest 116(3):833–841PubMedCentralPubMedCrossRefGoogle Scholar
  52. Taylor SL, Hefle SL, Bindslev-Jensen C, Bock SA, Burks AW Jr, Christie L, Hill DJ, Host A, Hourihane JOB, Lack G, Metcalfe DD, Moneret-Vautrin DA, Vadas PA, Rance F, Skrypec DJ, Trautman TA, Yman IM, Zeiger RS (2002) Factors affecting the determination of threshold doses for allergenic foods: how much is too much? J Allergy Clin Immunol 109(1):24–30PubMedCrossRefGoogle Scholar
  53. Weiner HL (2001) Oral tolerance: immune mechanisms and the generation of Th3-type TGF-beta-secreting regulatory cells. Microbes Infect 3(11):947–954PubMedCrossRefGoogle Scholar
  54. Wells JM, Mercenier A (2008) Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nat Rev Microbiol 6(5):349–362PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Chengcheng Ren
    • 1
  • Qiuxiang Zhang
    • 1
  • Gang Wang
    • 1
  • Chunqing Ai
    • 1
  • Mengsha Hu
    • 1
  • Xiaoming Liu
    • 1
  • Fengwei Tian
    • 1
  • Jianxin Zhao
    • 1
  • Yongquan Chen
    • 1
    • 2
  • Miao Wang
    • 1
  • Hao Zhang
    • 1
  • Wei Chen
    • 1
    • 2
  1. 1.State Key Laboratory of Food Science and Technology, School of Food Science and TechnologyJiangnan UniversityWuxiChina
  2. 2.Synergistic Innovation Center for Food Safety and NutritionWuxiChina

Personalised recommendations