Applied Microbiology and Biotechnology

, Volume 98, Issue 13, pp 6125–6135 | Cite as

Degradation of atrazine by Frankia alni ACN14a: gene regulation, dealkylation, and dechlorination

  • Medhat Rehan
  • Martin Kluge
  • Stefan Fränzle
  • Harald Kellner
  • René Ullrich
  • Martin Hofrichter
Environmental biotechnology

Abstract

Atrazine is transformed to N-isopropylammelide through hydroxyatrazine as an intermediate as indicated by high-performance liquid chromatography/mass spectroscopy in culture filtrates of Frankia alni ACN14a and Frankia sp. EuI1c. Both Frankia strains have the ability to degrade atrazine via dechlorination and dealkylation and, subsequently, may be using it as a nitrogen and carbon source as detected here by increasing their growth patterns. Bioinformatic analysis of the Frankia genomes revealed that a potential gene cluster involved in atrazine decomposition contains three genes, namely, trzN (FRAAL1474 and FraEuI1c_5874), atzB (FRAAL1473 and FraEuI1c_5875), and atzR (FRAAL1471). The relative messenger RNA gene expression of the former genes was examined by qRT-PCR. The LysR-type transcriptional regulator atzR (FRAAL1471), which is expected to control the cluster expression, showed a 13-fold increase in the expression level under atrazine stress. Moreover, the putative adenosine aminohydrolase 3 atzB (FRAAL1473), which is expected to dealkylate the N-ethyl group of atrazine, showed also an increased expression by factor 16 with increased exposure. Eventually, the trzN (FRAAL1474) gene, which is predicted to encode a putative amidohydrolase catalyzing atrazine dechlorination, exhibited 31-fold increased expression. To our best knowledge, this is the first report about adenosine aminohydrolase 3 function in the dealkylation of the N-ethyl group from atrazine.

Keywords

Frankia Actinorhizal symbiosis s-Triazine biodegradation qRT-PCR 

Supplementary material

253_2014_5665_MOESM1_ESM.pdf (197 kb)
ESM 1(PDF 197 kb)

References

  1. Abigail MEA, Nilanjana D (2012) Microbial degradation of atrazine, commonly used herbicide. Int J Adv Biol Res 2:16–23Google Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedCrossRefGoogle Scholar
  3. Ang EL, Zhao H, Obbard JP (2005) Recent advances in the bioremediation of persistent organic pollutants via biomolecular engineering. Enzym Microb Technol 37:487–496CrossRefGoogle Scholar
  4. Beauchemin N, Gtari M, Ghodhbane-Gtari F, Furnholm T, Sen A, Wall L, Tavares F, Santos C, Nouioui I, Xu F, Lucus S, Copeland A, Lapidus A, Galina-del Rio T, Tice H, Bruce D, Goodwin L, Pitluck S, Larimer F, Land ML , Hauser L, Tisa LS (2012) What can the genome of an infective ineffective (Fix-) Frankia strain (EuI1c) that is able to form nodules with its host plant tell us about actinorhizal symbiosis and Frankia evolution. The 112th General Meeting of the American Society for Microbiology American Society for Microbiology, San Francisco, CAGoogle Scholar
  5. Benson DR, Silvester WB (1993) Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol Rev 57:293–319PubMedCentralPubMedGoogle Scholar
  6. Benson DR, Brooks JM, Huang Y, Bichart DM, Mastronunzio JE (2011) The biology of Frankia sp. strains in the post-genome era. Mol Plant - Microbe Interactions 24:1310–1316CrossRefGoogle Scholar
  7. Boundy-Mills K, De Souza M, Mandelbaum R, Wackett L, Sadowsky M (1997) The atzB gene of Pseudomonas sp. strain ADP encodes the second enzyme of a novel atrazine degradation pathway. Appl Environ Microbiol 63:916–923PubMedCentralPubMedGoogle Scholar
  8. Bouquard C, Ouazzani J, Prome J, Michel-Briand Y, Plesiat P (1997) Dechlorination of atrazine by a Rhizobium sp. isolate. Appl Environ Microbiol 63:862–866PubMedCentralPubMedGoogle Scholar
  9. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  10. De Souza M, Wackett L, Sadowsky M (1996) Atrazine chlorohydrolase from Pseudomonas sp. strain ADP: gene sequence, enzyme purification, and protein characterisation. J Bacteriol 178:4894–4900PubMedCentralPubMedGoogle Scholar
  11. De Souza M, Wackett L, Sadowsky M (1998) The atrazine catabolism genes atzABC are widespread and highly conserved. J Bacteriol 180:1951–1954PubMedCentralPubMedGoogle Scholar
  12. Devers M, Soulas G, Martin-Laurent F (2004) Real-time reverse transcription PCR analysis of expression of atrazine catabolism genes in two bacterial strains isolated from soil. J Microbiol Methods 56:3–15PubMedCrossRefGoogle Scholar
  13. Devers M, Rouard N, Martin-Laurent F (2007) Genetic rearrangement of the atzAB atrazine-degrading gene cassette from pADP1::Tn5 to the chromosome of Variovorax sp. MD1 and MD2. Gene 392:1–6Google Scholar
  14. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797PubMedCentralPubMedCrossRefGoogle Scholar
  15. El Sebaï T, Devers-Lamrani M, Changey F, Rouard N, Martin-Laurent F (2011) Evidence of atrazine mineralization in a soil from the Nile Delta: isolation of Arthrobacter sp. TES6, an atrazine-degrading strain. Int Biodeterior Biodegrad 65:1249–1255CrossRefGoogle Scholar
  16. Furnholm T, Beauchemin N, Tisa LS (2012) Development of a semi-high-throughput growth assay for the filamentous actinobacteria Frankia. Arch Microbiol 194:13–20PubMedCrossRefGoogle Scholar
  17. Garcıa-Gonzalez V, Govantes F, Shaw LJ, Burns RG, Santero E (2003) Nitrogen control of atrazine utilization in Pseudomonas sp strain ADP. Appl Environ Microbiol 69:6987–6993PubMedCentralPubMedCrossRefGoogle Scholar
  18. Ghodbhane-Gtari F, Beauchemin N, Bruce D, Chain P, Chen A, Davenport KW, Deshpande S, Detter C., Furnholm T, Goodwin L, Gtari M, Han C, Han J, Huntemann M, Ivanova N, Kyrpides N, Land ML, Markowitz V, Mavrommatis K, Nolan M, Nouioui I, Pagani I, Pati A, Pitluck S, Santos CL , Sen A, Sur S, Szeto S, Tavares F, Teshima H, Thakur S, Wall L, Woyke T, Tisa LS. 2013. Draft genome sequence of Frankia sp. strain CN3, an atypical, non-infective (Nod-) ineffective (Fix-) isolate from Coriaria nepalensis. Genome Announc. 1 e00085–13Google Scholar
  19. Govantes F, Garcıa-Gonzalez V, Porrua O, Platero AI, Jimenez-Fernandez A, Santero E (2010) Regulation of the atrazine-degradative genes in Pseudomonas sp. strain ADP. FEMS Microbiol Lett 310:1–8PubMedCrossRefGoogle Scholar
  20. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704PubMedCrossRefGoogle Scholar
  21. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9Google Scholar
  22. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  23. Markowitz VM, Korzeniewski F, Palaniappan K, Szeto E, Werner G, Padki A, Zhao XL, Dubchak I, Hugenholtz P, Anderson I, Lykidis A, Mavromatis K, Ivanova N, Kyrpides NC (2006) The integrated microbial genomes (IMG) system. Nucleic Acids Res 34:D344–D348PubMedCentralPubMedCrossRefGoogle Scholar
  24. Martinez B, Tomkins J, Wackett LP, Wing R, Sadowsky MJ (2001) Complete nucleotide sequence and organization of the atrazine catabolic plasmid pADP-1 from Pseudomonas sp. strain ADP. J Bacteriol 183:5684–5697PubMedCentralPubMedCrossRefGoogle Scholar
  25. Monard C, Martin-Laurent F, Lima O, Devers-Lamrani M, Binet F (2012) Estimating the biodegradation of pesticide in soils by monitoring pesticide-degrading gene expression. Biodegradation 24:203–213Google Scholar
  26. Neumann G, Teras R, Monson L, Kivisaar M, Schauer F, Heipieper HJ (2004) Simultaneous degradation of atrazine and phenol by Pseudomonas sp. strain ADP: effects of toxicity and adaptation. Appl Environ Microbiol 70:1907–1912PubMedCentralPubMedCrossRefGoogle Scholar
  27. Niemann J, Tisa LS (2008) Nitric oxide and oxygen regulate truncated hemoglobin gene expression in Frankia strain CcI3. J Bacteriol 190:7864–7867PubMedCentralPubMedCrossRefGoogle Scholar
  28. Normand P, Lapierre P, Tisa LS, Gogarten JP, Alloisio N, Bagnarol E, Bassi CA, Berry AM, Bickhart DM, Choisne N, Couloux A, Cournoyer B, Cruveiller S, Daubin V, Demange N, Francino MP, Goltsman E, Huang Y, Kopp OR, Labarre L, Lapidus A, Lavire C, Marechal J, Martinez M, Mastronunzio JE, Mullin BC, Niemann J, Pujic P, Rawnsley T, Rouy Z, Schenowitz C, Sellstedt A, Tavares F, Tomkins JP, Vallenet D, Valverde C, Wall LG, Wang Y, Medigue C, Benson DR (2007) Genome characteristics of facultatively symbiotic Frankia sp strains reflect host range and host plant biogeography. Genome Res 17:7–15PubMedCentralPubMedCrossRefGoogle Scholar
  29. Nouioui I, Beauchemin N, Cantor MN, A. Chen A, Detter JC, Furnholm T, Ghodhbane-Gtari F, Goodwin L, Gtari M, Han C, Han J, Huntemann M, Hua XS, Iyanova N, Kyrpides N, Markowitz V, Mavrommatis K, Mikhailova N, Nordberg HP, Ovchinnikova G, Pagani J, Pati A, Sen A, Sur S, Szeto E, Thakur S, Wall L, Wei CL, Woyke T, Tisa LS (2013) Draft genome sequence of Frankia sp. strain BMG5.12, a nitrogen-fixing actinobacterium isolated from Tunisian soils. Genome Announc.1 e00468-13Google Scholar
  30. Perrine-Walker F, Doumas P, Lucas M, Vaissayre V, Beauchemin NJ, Band LR, Chopard J, Crabos A, Conejero G, Peret B, King JR, Verdeil JL, Hocher V, Franche C, Bennett MJ, Tisa LS, Laplaze L (2010) Auxin carriers localization drives auxin accumulation in plant cells infected by Frankia in Casuarina glauca actinorhizal nodules. Plant Physiol 154:1372–1380PubMedCentralPubMedCrossRefGoogle Scholar
  31. Persson T, Benson DR, Normand P, Vanden Heuvel B, Pujic P, Chertkov O, Teshima H, Bruce DC, Detter C, Tapia R, Han SS, Han J, Woyke T, Pitluck S, Pennacchio L, Nolan M, Ivanova N, Pati A, Land ML, Pawlowski K, Berry AM (2011) Genome sequence of “Candidatus Frankia datiscae” Dg1, the uncultured microsymbiont from nitrogen-fixing root nodules of the dicot Datisca glomerata. J Bacteriol 193:7017–7018PubMedCentralPubMedCrossRefGoogle Scholar
  32. Platero AI, García-Jaramillo M, Santero E, Govantes F (2012) Transcriptional organization and regulatory elements of a Pseudomonas sp. ADP operon encoding a LysR-type regulator and a putative solute transport system. J Bacteriol 194:6560–6573PubMedCentralPubMedCrossRefGoogle Scholar
  33. Sadowsky MJ, Tong Z, De Souza M, Wackett LP (1998) AtzC is a new member of the amidohydrolase protein superfamily and is homologous to other atrazine-metabolizing enzymes. J Bacteriol 180:152–158PubMedCentralPubMedGoogle Scholar
  34. Sagarkar S, Mukherjee S, Nousiainen A, Björklöf K, Purohi HJ, Jørgensen KS, Kapley A (2013) Monitoring bioremediation of atrazine in soil microcosms using molecular tools. Environ Pollut 172:108–115PubMedCrossRefGoogle Scholar
  35. Sajjaphan N, Shapir N, Wackett LP, Palmer M, Blackmon B, Tomkins J, Sadowsky MJ (2004) Arthrobacter aurescens TC1 atrazine catabolism genes trzN, atzB, and atzC are linked on a 160-kilobase region and are functional in Escherichia coli. Appl Environ Microbiol 70:4402–4407PubMedCentralPubMedCrossRefGoogle Scholar
  36. Schwencke J, Caru M (2001) Advances in actinorhizal symbiosis: host plant-Frankia interactions, biology and applications in arid land reclamation. Arid Land Res Manag 15:285–327CrossRefGoogle Scholar
  37. Scott C, Jackson CJ, Coppin CW, Mourant RG, Hilton ME, Sutherland TD, Russell RJ, Oakeshott JG (2009) Catalytic improvement and evolution of atrazine chlorohydrolase. Appl Environ Microbiol 75:2184–2191PubMedCentralPubMedCrossRefGoogle Scholar
  38. Seffernick JL, Johnson G, Sadowsky MJ, Wackett LP (2000) Substrate specificity of atrazine chlorohydrolase and atrazine-catabolizing bacteria. Appl Environ Microbiol 66:4247–4252PubMedCentralPubMedCrossRefGoogle Scholar
  39. Seffernick JL, Aleem A, Osborne JP, Johnson G, Sadowsky MJ, Wackett LP (2007) Hydroxyatrazine N-ethylaminohydrolase (AtzB): an amidohydrolase superfamily enzyme catalyzing deamination and dechlorination. J Bacteriol 189:6989–6997PubMedCentralPubMedCrossRefGoogle Scholar
  40. Seffernick JL, Reynolds E, Fedorov AA, Fedorov E, Almo SC, Sadowsky MJ, Wackett LP (2010) X-ray structure and mutational analysis of the atrazine chlorohydrolase TrzN. J Biol Chem 285:30606–30614PubMedCentralPubMedCrossRefGoogle Scholar
  41. Sen A, Beauchemin N, Bruce D, Chain P, Chen A, Davenport KW, Deshpande S, Detter C, Furnholm T, Ghodbhane-Gtari F, Goodwin L, Gtari M, Han C, Han J, Huntemann M, Ivanova N, Kyrpides N, Land ML, Markowitz V, Mavrommatis K, Nolan M, Nouioui I, Pagani I , Pati A, Pitluck S, Santos CL, Sur S, Szeto E, Tavares F, Teshima H, Thakur S, Wall L, Wishart J, Woyke T, Tisa LS (2013) Draft genome sequence of Frankia sp. strain QA3, a nitrogen-fixing actinobacterium isolated from the root nodule of Alnus nitida. Genome Announc. 1 e00103–13Google Scholar
  42. Shao ZQ, Seffens W, Mulbry W, Behki RM (1995) Cloning and expression of the s-triazine hydrolase gene (trzA) from Rhodococcus corallinus and development of Rhodococcus recombinant strains capable of dealkylating and dechlorinating the herbicide atrazine. J Bacteriol 177:5748–5755PubMedCentralPubMedGoogle Scholar
  43. Shapir N, Osborne JP, Johnson G, Sadowsky MJ, Wackett LP (2002) Purification, substrate range, and metal center of AtzC: the N-isopropylammelide aminohydrolase involved in bacterial atrazine metabolism. J Bacteriol 184:5376–5384PubMedCentralPubMedCrossRefGoogle Scholar
  44. Tisa L, Mcbride M, Ensign JC (1983) Studies of growth and morphology of Frankia strains EAN1pec, EuI1c, Cpi1, and Acn1ag. Can J Bot 61:2768–2773Google Scholar
  45. Tisa LS, Chval MS, Krumholz GD, Richards J (1999) Antibiotic resistance patterns of Frankia strains. Can J Bot 77:1257–1260Google Scholar
  46. Tisa LS, Beauchemin N, Gtari M, Sen A, Wall L (2013) What stories can the Frankia genomes start to tell us? J Biosci 38:719–726Google Scholar
  47. Topp E, Mulbry WM, Zhu H, Nour SM, Cuppels D (2000) Characterization of s-triazine herbicide metabolism by a Nocardioides sp. isolated from agricultural soils. Appl Environ Microbiol 66:3134–3141PubMedCentralPubMedCrossRefGoogle Scholar
  48. Wackett LP, Sadowsky MJ, Martinez B, Shapir N (2002) Biodegradation of atrazine and related s-triazine compounds: from enzymes to field studies. Appl Microbiol Biotechnol 58:39–45PubMedCrossRefGoogle Scholar
  49. Wall LG (2000) The actinorhiza symbiosis. J Plant Growth Regul 2:167–182Google Scholar
  50. Wall L, Beauchemin N, Cantor MN, Chaia E, Chen A, Detter JC, Furnholm T, et al. 2013. Draft genome sequence of Frankia sp. strain BCU110501, a nitrogen-fixing actinobacterium isolated from nodules of Discaria trinevis. Genome Announc. 1 e00503-13Google Scholar
  51. Wang Q, Xie S (2012) Isolation and characterization of a high-efficiency soil atrazine-degrading Arthrobacter sp. strain. Int Biodeterior Biodegrad 71:61–66CrossRefGoogle Scholar
  52. Wood TK (2008) Molecular approaches in bioremediation. Curr Opin Biotechnol 19:572–578PubMedCrossRefGoogle Scholar
  53. Zhang Y, Jiang Z, Cao B, Hu M, Wang Z, Dong X (2011) Metabolic ability and gene characteristics of Arthrobacter sp. strain DNS10, the sole atrazine-degrading strain in a consortium isolated from black soil. Int Biodeterior Biodegrad 65:1140–1144CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Medhat Rehan
    • 1
    • 2
  • Martin Kluge
    • 1
  • Stefan Fränzle
    • 1
  • Harald Kellner
    • 1
  • René Ullrich
    • 1
  • Martin Hofrichter
    • 1
  1. 1.Department of Bio- and Environmental SciencesInternational Institute ZittauZittauGermany
  2. 2.Department of GeneticsKafrelsheikh UniversityKafr El-SheikhEgypt

Personalised recommendations