Advertisement

Applied Microbiology and Biotechnology

, Volume 98, Issue 13, pp 6061–6071 | Cite as

Glucose kinases from Streptomyces peucetius var. caesius

  • Beatriz Ruiz-Villafán
  • Romina Rodríguez-Sanoja
  • Guillermo Aguilar-Osorio
  • Guillermo Gosset
  • Sergio Sanchez
Applied microbial and cell physiology

Abstract

Glucose kinases (Glks) are enzymes of the glycolytic pathway involved in glucose phosphorylation. These enzymes can use various phosphoryl donors such as ATP, ADP, and polyphosphate. In several streptomycetes, ATP-glucose kinase (ATP-Glk) has been widely studied and regarded as the main glucose phosphorylating enzyme and is likely a regulatory protein in carbon catabolite repression. In cell extracts from the doxorubicin overproducing strain Streptomyces peucetius var. caesius, grown in glucose, a polyphosphate-dependent Glk (Pp-Glk) was detected by zymogram. Maximum activity was observed during the stationary growth phase (48 h) of cells grown in 100 mM glucose. No activity was detected when 20 mM glutamate was used as the only carbon source, supporting a role for glucose in inducing this enzyme. Contrary to wild-type strains of Streptomyces coelicolor, Streptomyces lividans, and Streptomyces thermocarboxydus K-155, S. peucetius var. caesius produced 1.8 times more Pp-Glk than ATP-Glk. In addition, this microorganism produced five and four times more Pp-Glk and anthracyclines, respectively, than its wild-type S. peucetius parent strain, supporting a role for this enzyme in antibiotic production in the overproducer strain. A cloned 726-bp DNA fragment from S. peucetius var. caesius encoded a putative Pp-Glk, with amino acid identities between 83 and 87 % to orthologous sequences from the above-cited streptomycetes. The cloned fragment showed the polyphosphate-binding sequences GXDIGGXXIK, TXGTGIGSA, and KEX(4)SWXXWA. Sequences for the Zn-binding motif were not detected in this fragment, suggesting that Pp-Glk is not related to the Glk ROK family of proteins.

Keywords

Glucose kinase Streptomyces peucetius var. caesius Anthracyclines Polyphosphate 

Notes

Acknowledgments

We are indebted to Dr. Elizabeth Langley for critical reading of the manuscript. This work was supported in part by the grants PAPIIT IN209210 and IN201413 from DGAPA, UNAM, Mexico. We thank Dr. Guillermo Mendoza Hernández✝ for his useful assistance in Pp-Glk identification by MALDITOF. The technical participation of Marco A. Ortíz Jiménez is greatly appreciated.

References

  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCentralPubMedCrossRefGoogle Scholar
  2. Angell S, Lewis CG, Buttner MJ, Bibb MJ (1994) Glucose repression in Streptomyces coelicolor A3(2) a likely regulatory role for glucose kinase. Mol Gen Genet 244:135–143PubMedCrossRefGoogle Scholar
  3. Arcamone F, Cassinelli G, Fantini G, Grein A, Orezzi P, Pol C, Spalla C (1969) Adriamycin, 1,4-hydroxydaunomycin, a new antitumor antibiotic from S. peucetius var. caesius. Biotechnol Bioeng XI:1101–1110CrossRefGoogle Scholar
  4. Avalos-García M (2010) Polyphasic characterization of a Streptomyces strain isolated from soil from Valle de Chalco. Dissertation, Universidad Nacional Autonoma de MexicoGoogle Scholar
  5. Bae J, Kim D, Choi Y, Koh S, Park JE, Kim JS, Moon SH, Park B-H, Park M, Song H-E, Hong S-I, Lee D-S (2005) A hexokinase with broad sugar specificity from a thermophilic bacterium. Biochem Biophys Res Commun 334:754–763PubMedCrossRefGoogle Scholar
  6. Concha MI, Leon G (2000) Cloning, functional expression and partial characterization of the glucose kinase from Renibacterium salmoninarum. FEMS Microbiol Lett 186:97–101PubMedCrossRefGoogle Scholar
  7. Dekleva ML, Titus JA, Strohl WR (1985) Nutrient effects on anthracycline production by Streptomyces peucetius in a defined medium. Can J Microbiol 31:287–294PubMedCrossRefGoogle Scholar
  8. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797PubMedCentralPubMedCrossRefGoogle Scholar
  9. Escalante L, Ramos I, Imriskova I, Langley E, Sanchez S (1999) Glucose repression of anthracyclines formation in Streptomyces peucetius var. caesius. Appl Microbiol Biotechnol 52:572–578CrossRefGoogle Scholar
  10. Forero A, Sanchez M, Chávez A, Ruiz B, Rodríguez-Sanoja R, Servín-González L, Sanchez S (2012) Possible involvement of the sco2127 gene product in glucose repression of actinorhodin production in Streptomyces coelicolor. Can J Microbiol 58:1195–1201Google Scholar
  11. Gubbens J, Janus M, Florea BI, Overkleeft HS, van Wezel GP (2012) Identification of glucose kinase-dependent and -independent pathways for carbon control of primary metabolism development and antibiotic production in Streptomyces coelicolor by quantitative proteomics. Mol Microbiol 86:1490–1507PubMedCrossRefGoogle Scholar
  12. Henzel WJ, Stults JT (1996) Unit 16.2. Matrix assisted laser desorption/ionization time-of-flight mass analysis of peptides. In: Coligan JE, Dunn BM, Ploegh HL, Speicher DW, Wingfield PT (eds) Current protocols in protein science. Wiley, New York, pp 16.1.1–16.2.11Google Scholar
  13. Hostalek Z, Tobek I, Bobyk MA, Kulayev IS (1976) Role of ATP-glucokinase and polyphosphate glucokinase in Streptomyces aureofaciens. Folia Microbiol 21:131–138CrossRefGoogle Scholar
  14. Imriskova I, Langley E, Arreguín-Espinosa R, Aguilar G, Pardo JP, Sanchez S (2001) Rapid purification and biochemical characterization of glucose kinase from Streptomyces peucetius var. caesius. Arch Biochem Biophys 394:137–144PubMedCrossRefGoogle Scholar
  15. Imriskova I, Arreguín-Espinosa R, Guzmán S, Rodríguez-Sanoja R, Langley E, Sánchez S (2005) Biochemical characterization of the glucose kinase from Strepyomyces coelicolor compared to Streptomyces peucetius var. caesius. Res Microbiol 156:361–366PubMedCrossRefGoogle Scholar
  16. Kawai S, Mukai T, Mori S, Mikami B, Murata K (2005) Hypothesis: structures, evolution, and ancestor of glucose kinases in the hexokinase family. J Biosci Bioeng 99:320–330PubMedCrossRefGoogle Scholar
  17. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. John Innes Foundation, NorwichGoogle Scholar
  18. Koide M, Miyanag A, Kudo F, Eguchi T (2013) Characterization of polyphosphate glucokinase SCO5059 from Streptomyces coelicolor. Biosci Biotechnol Biochem 77:2322–2324PubMedCrossRefGoogle Scholar
  19. Kwakman JHJM, Postma PW (1994) Glucose kinase has a regulatory role in carbon catabolite repression in Streptomyces coelicolor. J Bacteriol 176:2694–2698PubMedCentralPubMedGoogle Scholar
  20. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  21. Liao H, Myung S, Zhang Y-H P (2012) One-step purification and immobilization of thermophilic polyphosphate glucokinase from Thermobifida fusca YX: glucose-6-phosphate generation without ATP. Appl Microbiol Biotechnol 93:1109–1117PubMedCrossRefGoogle Scholar
  22. Lindner SN, Knebel S, Pallerla SR, Schoberth SM, Wendisch VF (2010) Cg2091 encodes a polyphosphate/ATP-dependent glucokinase of Corynebacterium glutamicum. Appl Microbiol Biotechnol 87:703–713PubMedCrossRefGoogle Scholar
  23. Miyazono K-I, Tabei N, Morita S, Ohnishi Y, Horinouchi S, Takonura M (2012) Substrate recognition mechanism and substrate-dependent conformational changes of an ROK family glucokinase from Streptomyces griseus. J Bacteriol 194:607–616PubMedCentralPubMedCrossRefGoogle Scholar
  24. Mukai T, Kawai S, Matsukawa H, Matuo Y, Murata K (2003) Characterization and molecular cloning of a novel enzyme, inorganic polyphosphate/ATP-glucomannokinase, of Arthrobacter sp. strain KM. Appl Environ Microbiol 69:3849–3857PubMedCentralPubMedCrossRefGoogle Scholar
  25. Ramos I, Guzmán S, Escalante L, Imriskova I, Rodríguez-Sanoja R, Sánchez S, Langley E (2004) Glucose kinase alone cannot be responsible for carbon source regulation in Streptomyces peucetius var. caesius. Res Microbiol 155:267–274PubMedCrossRefGoogle Scholar
  26. Rao NN, Gómez-García MR, Kornberg A (2009) Inorganic polyphosphate: essential for growth and survival. Ann Rev Biochem 78:605–647PubMedCrossRefGoogle Scholar
  27. Segura D, González R, Rodríguez R, Sandoval T, Escalante L, Sánchez S (1996) Streptomyces mutants insensitive to glucose repression showed deregulation of primary and secondary metabolism. Asia Pac J Mol Biol Biotechnol 4:30–36Google Scholar
  28. Szymona S, Ostrowski W (1964) Inorganic polyphosphate glucokinase of Mycobacterium phlei. BBA-Enzymol Subj 85:283–295Google Scholar
  29. Tacar O, Sriamornsak P, Dass CR (2013) Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol 65:157–170PubMedCrossRefGoogle Scholar
  30. Takahashi N, Kalfas S, Yamada T (1995) Phosphorylating enzymes involved in glucose fermentation of Actinomyces neslundii. J Bacteriol 177:5806–5811PubMedCentralPubMedGoogle Scholar
  31. Tanaka S, Lee S-O, Hamaoka K, Kato J, Takiguchi N, Nakamura K, Ohtake H, Kuroda A (2003) Strictly polyphosphate-dependent glucokinase in a polyphosphate-accumulating bacterium, Microlunatus phoshphovorous. J Bacteriol 185:5654–5656PubMedCentralPubMedCrossRefGoogle Scholar
  32. van Wezel GP, Mahr K, König M, Traag BA, Pimentel-Schmitt EF, Willimek A, Titgemeyer F (2004) GlcP constitutes the major glucose uptake system of Streptomyces coelicolor A3(2). Mol Microbiol 55:624–636CrossRefGoogle Scholar
  33. van Wezel GP, König M, Mahr K, Nothaft H, Thomae AW, Bibb M, Titgemeyer F (2007) A new piece of an old jigsaw: glucose kinase is activated posttranslationally in a glucose transport-dependent manner in Streptomyces coelicolor A3(2). J Mol Microbiol Biotechnol 12:67–74PubMedCrossRefGoogle Scholar
  34. Zeman SM, Phillips DR, Crothers DM (1998) Characterization of covalent adriamycin DNA adducts. PNAS 95:11561–11565Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Beatriz Ruiz-Villafán
    • 1
  • Romina Rodríguez-Sanoja
    • 1
  • Guillermo Aguilar-Osorio
    • 2
  • Guillermo Gosset
    • 3
  • Sergio Sanchez
    • 1
  1. 1.Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de México (UNAM)MéxicoMexico
  2. 2.Departamento de Alimentos y Biotecnología, Facultad de QuímicaUNAMMéxicoMexico
  3. 3.Instituto de BiotecnologíaUNAMCuernavaca MorelosMexico

Personalised recommendations