Applied Microbiology and Biotechnology

, Volume 98, Issue 14, pp 6453–6466 | Cite as

International Space Station environmental microbiome — microbial inventories of ISS filter debris

  • Kasthuri Venkateswaran
  • Parag Vaishampayan
  • Jessica Cisneros
  • Duane L. Pierson
  • Scott O. Rogers
  • Jay Perry
Environmental biotechnology

Abstract

Despite an expanding array of molecular approaches for detecting microorganisms in a given sample, rapid and robust means of assessing the differential viability of the microbial cells, as a function of phylogenetic lineage, remain elusive. A propidium monoazide (PMA) treatment coupled with downstream quantitative polymerase chain reaction (qPCR) and pyrosequencing analyses was carried out to better understand the frequency, diversity, and distribution of viable microorganisms associated with debris collected from the crew quarters of the International Space Station (ISS). The cultured bacterial counts were more in the ISS samples than cultured fungal population. The rapid molecular analyses targeted to estimate viable population exhibited 5-fold increase in bacterial (qPCR-PMA assay) and 25-fold increase in microbial (adenosine triphosphate assay) burden than the cultured bacterial population. The ribosomal nucleic acid-based identification of cultivated strains revealed the presence of only four to eight bacterial species in the ISS samples, however, the viable bacterial diversity detected by the PMA-pyrosequencing method was far more diverse (12 to 23 bacterial taxa) with the majority consisting of members of actinobacterial genera (Propionibacterium, Corynebacterium) and Staphylococcus. Sample fractions not treated with PMA (inclusive of both live and dead cells) yielded a great abundance of highly diverse bacterial (94 to 118 taxa) and fungal lineages (41 taxa). Even though deep sequencing capability of the molecular analysis widened the understanding about the microbial diversity, the cultivation assay also proved to be essential since some of the spore-forming microorganisms were detected only by the culture-based method. Presented here are the findings of the first comprehensive effort to assess the viability of microbial cells associated with ISS surfaces, and correlate differential viability with phylogenetic affiliation.

Keywords

International Space Station Vacuum cleaner debris Pyrosequencing Microbial diversity Closed habitat PMA ATP qPCR 

Supplementary material

253_2014_5650_MOESM1_ESM.pdf (1.7 mb)
ESM 1(PDF 1761 kb)

References

  1. ASTM-E11 (1995) Standard Specification for Woven Wire Test Sieve Cloth and Test Sieves. In: ASTM (ed). vol 33 CFR 159.125. American Society for Testing and Materials, Washington DCGoogle Scholar
  2. Benardini J, Ballinger J, Crawford R, Roman M, Sumner R, Venkateswaran K In: 34th International Conference on Environmental Systems, International Space Station Internal Thermal Coolant System: an initial assessment of the microbial communities within fluids from ground support and flight hardware, July 2005, Rome, Italy, 2005. SAE Technical paper seriesGoogle Scholar
  3. Boyden DG (1962) The bacterial flora in fleet ballistic missile submarines during prolonged submergence. In: U.S. Naval Medical Research Laboratory Report No. 386. In: Bureau of Medicine and Surgery ND (ed). vol 21 (17)Google Scholar
  4. Brüggemann H, Henne A, Hoster F, Liesegang H, Wiezer A, Strittmatter A, Hujer S, Dürre P, Gottschalk G (2004) The complete genome sequence of Propionibacterium acnes, a commensal of human skin. Science 305(5684):671–673. doi:10.1126/science.1100330 PubMedCrossRefGoogle Scholar
  5. Burge HA, Pierson DL, Groves TO, Strawn KF, Mishra SK (2000) Dynamics of airborne fungal populations in a large office building. Curr Microbiol 40(1):10–16PubMedCrossRefGoogle Scholar
  6. Cabral JPS (2010) Can we use indoor fungi as bioindicators of indoor air quality? Historical perspectives and open questions. Sci Total Environ 408(20):4285–4295. doi:10.1016/j.scitotenv.2010.07.005 PubMedCrossRefGoogle Scholar
  7. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336. doi:10.1038/nmeth.f.303 PubMedCentralPubMedCrossRefGoogle Scholar
  8. Castro VA, Thrasher AN, Healy M, Ott CM, Pierson DL (2004) Microbial characterization during the early habitation of the International Space Station. Microb Ecol 47(2):119–126PubMedCrossRefGoogle Scholar
  9. Chaudhary N, Marr KA (2011) Impact of Aspergillus fumigatus in allergic airway diseases. Clin Transl Allergy 1(1):4. doi:10.1186/2045-7022-1-4 PubMedCentralPubMedCrossRefGoogle Scholar
  10. Crous PW, Gams W, Stalpers JA, Robert V, Stegehuis G (2004) MycoBank: an online initiative to launch mycology into the 21st century. Stud Mycol 50:19–22Google Scholar
  11. Dali P, Giugliano ER, Vellozzi EM, Smith MA (2001) Susceptibilities of Propionibacterium acnes ophthalmic isolates to moxifloxacin. Antimicrob Agents Chemother 45(10):2969–2970. doi:10.1128/aac.45.10.2969-2970.2001 PubMedCentralPubMedCrossRefGoogle Scholar
  12. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72(7):5069–5072PubMedCentralPubMedCrossRefGoogle Scholar
  13. Douwes J, Thorne P, Pearce N, Heederik D (2003) Bioaerosol health effects and exposure assessment: progress and prospects. Ann Occup Hyg 47(3):187–200. doi:10.1093/annhyg/meg032 PubMedCrossRefGoogle Scholar
  14. Dowd SE, Sun Y, Secor PR, Rhoads DD, Wolcott BM, James GA, Wolcott RD (2008) Survey of bacterial diversity in chronic wounds using pyrosequencing, DGGE, and full ribosome shotgun sequencing. BMC Microbiol 8:43. doi:10.1186/1471-2180-8-43 PubMedCentralPubMedCrossRefGoogle Scholar
  15. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461. doi:10.1093/bioinformatics/btq461 PubMedCrossRefGoogle Scholar
  16. Edmiston CE Jr, Seabrook GR, Cambria RA, Brown KR, Lewis BD, Sommers JR, Krepel CJ, Wilson PJ, Sinski S, Towne JB (2005) Molecular epidemiology of microbial contamination in the operating room environment: is there a risk for infection? Surgery 138(4):579–582CrossRefGoogle Scholar
  17. Ferguson JK, Taylor GR, Mieszkuc BJ (1975) Microbiological investigations, pp 83–103. Scientific and Technical Information Office. National Aeronautics and Space Administration, Washington, DCGoogle Scholar
  18. Fierer N, Lauber CL, Zhou N, McDonald D, Costello EK, Knight R (2010) Forensic identification using skin bacterial communities. PNAS 107(14):6477–6481. doi:10.1073/pnas.1000162107 PubMedCentralPubMedCrossRefGoogle Scholar
  19. Hagemeyer O, Bünger J, Kampen V, Raulf-Heimsoth M, Drath C, Merget R, Brüning T, Broding HC (2013) Occupational allergic respiratory diseases in garbage workers: relevance of molds and Actinomycetes. In: Pokorski M (ed) Neurobiology of eespiration. Adv Exp Med Biol 788:313–320, Springer NetherlandsPubMedCrossRefGoogle Scholar
  20. Hashino S, Takahashi S, Morita R, Kanamori H, Onozawa M, Kawamura T, Kahata K, Kondo T, Tokimatsu I, Sugita T, Akizawa K, Asaka M (2013) Fungemia due to Trichosporon dermatis in a patient with refractory Burkitt's leukemia. Blood Res 48(2):154–156PubMedCentralPubMedCrossRefGoogle Scholar
  21. Human Microbiome Project C (2012) Structure, function and diversity of the healthy human microbiome. Nature 486(7402):207–214. doi:10.1038/nature11234 CrossRefGoogle Scholar
  22. Huttunen K, Rintala H, Hirvonen M-R, Vepsäläinen A, Hyvärinen A, Meklin T, Toivola M, Nevalainen A (2008) Indoor air particles and bioaerosols before and after renovation of moisture-damaged buildings: the effect on biological activity and microbial flora. Environ Res 107(3):291–298. doi:10.1016/j.envres.2008.02.008 PubMedCrossRefGoogle Scholar
  23. Jussila J, Komulainen H, Kosma VM, Pelkonen J, Hirvonen MR (2002) Inflammatory potential of the spores of Penicillium spinulosum isolated from indoor air of a moisture-damaged building in mouse lungs. Environ Toxicol Pharmacol 12(3):137–145PubMedCrossRefGoogle Scholar
  24. Katherine T, Steve L, Rachel E (2010) Development of a modified vacuum cleaner for lunar surface systems. 40th International Conference on Environmental Systems. International Conference on Environmental Systems (ICES). American Institute of Aeronautics and Astronautics, Washington, DCGoogle Scholar
  25. Kawamura Y, Li Y, Liu H, Huang X, Li Z, Ezaki T (2001) Bacterial population in Russian space station "Mir". Microbiol Immunol 45(12):819–828PubMedCrossRefGoogle Scholar
  26. Koenig DW, Pierson DL (1997) Microbiology of the Space Shuttle water system. Water Sci Technol 35(11–12):59–64PubMedCrossRefGoogle Scholar
  27. Kwan K, Cooper M, La Duc MT, Vaishampayan P, Stam C, Benardini JN, Scalzi G, Moissl-Eichinger C, Venkateswaran K (2011) Evaluation of procedures for the collection, processing, and analysis of biomolecules from low-biomass surfaces. Appl Environ Microbiol 77(9):2943–2953. doi:10.1128/aem.02978-10 PubMedCentralPubMedCrossRefGoogle Scholar
  28. La Duc MT, Nicholson W, Kern R, Venkateswaran K (2003) Microbial characterization of the Mars Odyssey spacecraft and its encapsulation facility. Environ Microbiol 5(10):977–985PubMedCrossRefGoogle Scholar
  29. La Duc MT, Dekas A, Osman S, Moissl C, Newcombe D, Venkateswaran K (2007) Isolation and characterization of bacteria capable of tolerating the extreme conditions of clean room environments. Appl Environ Microbiol 73(8):2600–2611. doi:10.1128/AEM.03007-06 PubMedCentralPubMedCrossRefGoogle Scholar
  30. La Duc MT, Vaishampayan P, Nilsson HR, Torok T, Venkateswaran K (2012) Pyrosequencing-derived bacterial, archaeal, and fungal diversity of spacecraft hardware destined for Mars. Appl Environ Microbiol 78(16):5912–5922. doi:10.1128/AEM.01435-12 PubMedCentralPubMedCrossRefGoogle Scholar
  31. Levine HB, Cobet AB (1970) The tektite-I dive. Mycological aspects. Arch Environ Health 20(4):500–505PubMedCrossRefGoogle Scholar
  32. Mantle PG, McHugh KM, Adatia R, Heaton JM, Gray T, Turner DR (1991) Penicillium aurantiogriseum-induced, persistent renal histopathological changes in rats; an experimental model for Balkan endemic nephropathy competitive with ochratoxin A. IARC Sci Publ 115:119–127PubMedGoogle Scholar
  33. McDonald D, Price MN, Goodrich J, Nawrocki EP, Desantis TZ, Probst A, Andersen GL, Knight R, Hugenholtz P (2012) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6(3):610–618. doi:10.1038/ismej.2011.139 PubMedCentralPubMedCrossRefGoogle Scholar
  34. Moissl C, Hosoya N, Bruckner J, Stuecker T, Roman M, Venkateswaran K (2007) Molecular microbial community structure of the Regenerative Enclosed Life Support Module Simulator air system. Int J Astrobiol 6(2):131–145CrossRefGoogle Scholar
  35. Morris JE (1972) Microbiology of the submarine environment. Proc R Soc Med 65(9):799–800PubMedCentralPubMedGoogle Scholar
  36. NASA (2010) Reference guide to the Inernational Space Station. In: NASA HQ (ed). vol NP-2010-09-682-HQ. National Aeronautics and Space Administration, Washington, DCGoogle Scholar
  37. Newcombe DA, LaDuc MT, Vaishampayan P, Venkateswaran K (2008) Impact of assembly, testing, and launch operations on the airborne bacterial diversity within a spacecraft assembly facility clean-room. Int J Astrobiol 7(3–4):223–236CrossRefGoogle Scholar
  38. Nocker A, Richter-Heitmann T, Montijn R, Schuren F, Kort R (2010) Discrimination between live and dead cellsin bacterial communities from environmental water samples analyzed by 454 pyrosequencing. Int Microbiol 13(2):59–65PubMedGoogle Scholar
  39. NRC (2011) Committee for the decadal survey on biological physical sciences in space: recapturing a future for space exploration: life and physical sciences research for a new era. The National Academies PressGoogle Scholar
  40. Perry JL, Coston JE (2014) Analysis of particulate and fiber debris samples returned from the International Space Station. In: 44th International Conference on Environmental Systems, Tucson, AZ, July 13–17, 2014. Curran Associates, IncGoogle Scholar
  41. Perry A, Lambert P (2011) Propionibacterium acnes: infection beyond the skin. Expert Rev Anti-Infect Ther 9(12):1149–1156. doi:10.1586/eri.11.137 PubMedCrossRefGoogle Scholar
  42. Pierson DL (2001) Microbial contamination of spacecraft. Gravit Space Biol Bull 14(2):1–6PubMedGoogle Scholar
  43. Pierson DL, Ott CM, Groves TO (2002) Characterization of microbial activity in the chamber systems and environment. Univelt, San Diego, pp 229–259Google Scholar
  44. Rawsthorne H, Dock CN, Jaykus LA (2009) PCR-based method using propidium monoazide to distinguish viable from nonviable Bacillus subtilis spores. Appl Environ Microbiol 75(9):2936–2939. doi:10.1128/AEM.02524-08 PubMedCentralPubMedCrossRefGoogle Scholar
  45. Rintala H (2011) Actinobacteria in indoor environments: exposures and respiratory health effects. Front Biosci (Sch Ed) 3:1273–1284CrossRefGoogle Scholar
  46. Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One 6(12):e27310. doi:10.1371/journal.pone.0027310 PubMedCentralPubMedCrossRefGoogle Scholar
  47. Stenberg B, Eriksson N, Hansson M. K., Ho¨o¨g J, Sandstro¨m M, Sundell J, Wall S (1993) The Office Illness Project in northern Sweden. An interdisciplinary study of the “sick building-syndrome” (SBS). In: Indoor Air'93, Helsinki, FinlandGoogle Scholar
  48. Suzuki MT, Taylor LT, DeLong EF (2000) Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5′-nuclease assays. Appl Environ Microbiol 66(11):4605–4614PubMedCentralPubMedCrossRefGoogle Scholar
  49. Taylor GR, Graves RC, Brockett RM, Ferguson JK, Mieszkuc BJ (1977) Skylab environmental and crew microbiological studies. In: Johnston R, Dietlein LF (eds) Biomedical results from Skylab. Scientific and Technical Information Office, National Aeronautics and Space Administration, Washington, DC, pp 53–63Google Scholar
  50. Thomas TL, Hooper TI, Camarca M, Murray J, Sack D, Mole D, Spiro RT, Horn WG, Garland FC (2000) A method for monitoring the health of US Navy submarine crewmembers during periods of isolation. Aviat Space Environ Med 71(7):699–705PubMedGoogle Scholar
  51. Trofa D, Gacser A, Nosanchuk JD (2008) Candida parapsilosis, an emerging fungal pathogen. Clin Microbiol Rev 21(4):606–625. doi:10.1128/cmr.00013-08 PubMedCentralPubMedCrossRefGoogle Scholar
  52. Tsapko VG, Chudnovets AJ, Sterenbogen MJ, Papach VV, Dutkiewicz J, Skórska C, Krysińska-Traczyk E, Golec M (2011) Exposure to bioaerosols in the selected agricultural facilities of the Ukraine and Poland — a review. Ann Agric Environ Med AAEM 18(1):19–27Google Scholar
  53. Upsher JF, Fletcher LE, Upsher CM (1994) Microbiological conditions on Oberon submarines. Department of Defence, Defence Science and Technology Organisation, MelbourneGoogle Scholar
  54. Vaishampayan P, Probst AJ, La Duc MT, Bargoma E, Benardini JN, Andersen GL, Venkateswaran K (2013) New perspectives on viable microbial communities in low-biomass cleanroom environments. ISME J 7(2):312–324 doi:http://www.nature.com/ismej/journal/v7/n2/suppinfo/ismej2012114s1.html Google Scholar
  55. Venkateswaran K, Hattori N, La Duc MT, Kern R (2003) ATP as a biomarker of viable microorganisms in clean-room facilities. J Microbiol Methods 52(3):367–377PubMedCrossRefGoogle Scholar
  56. Venkateswaran K, La Duc MT, Vaishampayan P (2012) Genetic inventory task: final report, JPL Publication 12–12, vol 1. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, pp 1–117Google Scholar
  57. Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D (2007) Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 71(3):495–548. doi:10.1128/mmbr.00005-07 PubMedCentralPubMedCrossRefGoogle Scholar
  58. Ward MD, Chung YJ, Copeland LB, Doerfler DL (2010) A comparison of the allergic responses induced by Penicillium chrysogenum and house dust mite extracts in a mouse model. Indoor Air 20(5):380–391. doi:10.1111/j.1600-0668.2010.00660.x PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2014

Authors and Affiliations

  • Kasthuri Venkateswaran
    • 1
  • Parag Vaishampayan
    • 1
  • Jessica Cisneros
    • 1
  • Duane L. Pierson
    • 2
  • Scott O. Rogers
    • 3
  • Jay Perry
    • 4
  1. 1.Biotechnology and Planetary Protection Group, Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Johnson Space CenterHoustonUSA
  3. 3.Department of Biological SciencesBowling Green State UniversityBowling GreenUSA
  4. 4.Marshall Space Flight CenterHuntsvilleUSA

Personalised recommendations