Advertisement

Applied Microbiology and Biotechnology

, Volume 98, Issue 12, pp 5709–5718 | Cite as

Metagenomic analysis of sludge from full-scale anaerobic digesters operated in municipal wastewater treatment plants

  • Ying Yang
  • Ke Yu
  • Yu Xia
  • Frankie T. K. Lau
  • Daniel T. W. Tang
  • Wing Cheong Fung
  • Herbert H. P. Fang
  • Tong ZhangEmail author
Environmental biotechnology

Abstract

This study applied Illumina high-throughput sequencing to explore the microbial communities and functions in anaerobic digestion sludge (ADS) from two wastewater treatment plants based on a metagenomic view. Taxonomic analysis using SILVA SSU database indicated that Proteobacteria (9.52–13.50 %), Bacteroidetes (7.18 %–10.65 %) and Firmicutes (7.53 %–9.46 %) were the most abundant phyla in the ADS. Differences of microbial communities between the two types of ADS were identified. Genera of Methanosaeta and Methanosarcina were the major methanogens. Functional analysis by SEED subsystems showed that the basic metabolic functions of metagenomes in the four ADS samples had no significant difference among them, but they were different from other microbial communities from activated sludge, human faeces, ocean and soil. Abundances of genes in methanogenesis pathway were also quantified using a methanogenesis genes database extracted from KEGG. Results showed that acetotrophic was the major methanogenic pathway in the anaerobic sludge digestion.

Keywords

Anaerobic digestion sludge Taxonomic analysis Functional SEED subsystems Methanogenesis pathway 

Notes

Acknowledgments

This work is supported by Hong Kong General Research Fund (7198/10E). Ying Yang, Ke Yu, and Yu Xia thank The University of Hong Kong for the postgraduate studentship. We thank the Drainage Services Department of the Government of the Hong Kong Special Administrative Region for their support for this study.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

253_2014_5648_MOESM1_ESM.pdf (661 kb)
ESM 1 (PDF 660 kb)

References

  1. Albertsen M, Hansen LBS, Saunders AM, Nielsen PH, Nielsen KL (2011) A metagenome of a full-scale microbial community carrying out enhanced biological phosphorus removal. ISME J 6(6):1094–1106. doi: 10.1038/ismej.2011.176 PubMedCentralPubMedCrossRefGoogle Scholar
  2. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402PubMedCentralPubMedCrossRefGoogle Scholar
  3. Ariesyady H, Ito T, Okabe S (2007) Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester. Water Res 41(7):1554–1568. doi: 10.1016/j.watres.2006.12.036 PubMedCrossRefGoogle Scholar
  4. Braguglia CM, Gagliano MC, Rossetti S (2012) High frequency ultrasound pretreatment for sludge anaerobic digestion: effect on floc structure and microbial population. Bioresour Technol 110:43–49. doi: 10.1016/j.biortech.2012.01.074 PubMedCrossRefGoogle Scholar
  5. Breitbart M, Hoare A, Nitti A, Siefert J, Haynes M, Dinsdale E, Edwards R, Souza V, Rohwer F, Hollander D (2009) Metagenomic and stable isotopic analyses of modern freshwater microbialites in Cuatro Ciénegas, Mexico. Environ Microbiol 11(1):16–34. doi: 10.1111/j.1462-2920.2008.01725.x PubMedCrossRefGoogle Scholar
  6. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37(Database issue):D141–D145. doi: 10.1093/nar/gkn879 PubMedCentralPubMedCrossRefGoogle Scholar
  7. Delmont TO, Prestat E, Keegan KP, Faubladier M, Robe P, Clark IM, Pelletier E, Hirsch PR, Meyer F, Gilbert JA, Le Paslier D, Simonet P, Vogel TM (2012) Structure, fluctuation and magnitude of a natural grassland soil metagenome. ISME J 6:1677–1687. doi: 10.1038/ismej.2011.197 PubMedCentralPubMedCrossRefGoogle Scholar
  8. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72(7):5069–5072. doi: 10.1128/AEM.03006-05 PubMedCentralPubMedCrossRefGoogle Scholar
  9. DiPippo JL, Nesbo CL, Dahle H, Doolittle WF, Birkland NK, Noll KM (2009) Kosmotoga olearia gen. nov., sp. nov., a thermophilic, anaerobic heterotroph isolated from an oil production fluid. Int J Syst Evol Micr 59(12):2991–3000. doi: 10.1099/ijs.0.008045-0 CrossRefGoogle Scholar
  10. Fang H, Cai L, Yu Y, Zhang T (2013) Metagenomic analysis reveals the prevalence of biodegradation genes for organic pollutants in activated sludge. Bioresour Technol 129:209–218. doi: 10.1016/j.biortech.2012.11.054 PubMedCrossRefGoogle Scholar
  11. Garcia SL, Jangid K, Whitman WB, Das KC (2011) Transition of microbial communities during the adaption to anaerobic digestion of carrot waste. Bioresour Technol 102(15):7249–7256. doi: 10.1016/j.biortech.2011.04.098 PubMedCrossRefGoogle Scholar
  12. Garcia-Peña EI, Parameswaran P, Kang DW, Canul-Chan M, Krajmalnik-Brown R (2011) Anaerobic digestion and co-digestion processes of vegetable and fruit residues: process and microbial ecology. Bioresour Technol 102(20):9447–9455. doi: 10.1016/j.biortech.2011.07.068 PubMedCrossRefGoogle Scholar
  13. Gomez-Alvarez V, Teal TK, Schmidt TM (2009) Systematic artifacts in metagenomes from complex microbial communities. ISME J 3(11):1314–1317. doi: 10.1038/ismej.2009.72 PubMedCrossRefGoogle Scholar
  14. Han Y, Liu J, Guo X, Li L (2012) Micro-environment characteristics and microbial communities in activated sludge flocs of different particle size. Bioresour Technol 124:252–258. doi: 10.1016/j.biortech.2012.08.008 PubMedCrossRefGoogle Scholar
  15. Hess M, Sczyrba A, Egan R, Kim TW, Chokhawala H, Schroth G, Luo S, Clark DS, Chen F, Zhang T, Mackie RI, Pennacchio LA, Tringe SG, Visel A, Woyke T, Wang Z, Rubin EM (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331(6016):463–467. doi: 10.1126/science.1200387 PubMedCrossRefGoogle Scholar
  16. Huson DH, Auch AF, Qi J, Schuster SC (2007) MEGAN analysis of metagenomic data. Genome Res 17(3):377–386. doi: 10.1101/gr.5969107 PubMedCentralPubMedCrossRefGoogle Scholar
  17. Jaenicke S, Ander C, Bekel T, Bisdorf R, Dröge M, Gartemann K-H, Jünemann S, Kaiser O, Krause L, Tille F, Zakrzewski M, Pühler A, Schlüter A, Goesmann A (2011) Comparative and joint analysis of two metagenomic datasets from a biogas fermenter obtained by 454-pyrosequencing. PLoS ONE 6(1):e14519. doi: 10.1371/journal.pone.0014519 PubMedCentralPubMedCrossRefGoogle Scholar
  18. Jung JY, Lee SH, Kim JM, Park MS, Bae JW, Hahn Y, Madsen EL, Jeon CO (2011) Metagenomic analysis of kimchi, a traditional Korean fermented food. Appl Environ Microb 77(7):2264–2274. doi: 10.1128/aem.02157-10 CrossRefGoogle Scholar
  19. Kim J, Park C, Kim T-H, Lee M, Kim S, Kim E-W, Lee J (2003) Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. J Biosci Bioeng 95(3):271–275PubMedCrossRefGoogle Scholar
  20. Knight R, Jansson J, Field D, Fierer N, Desai N, Fuhrman JA, Hugenholtz P, van der Lelie D, Meyer F, Stevens R, Bailey MJ, Gordon JI, Kowalchuk GA, Gilbert JA (2012) Unlocking the potential of metagenomics through replicated experimental design. Nat Biotechnol 30(6):513–520. doi: 10.1038/nbt.2235 PubMedCrossRefGoogle Scholar
  21. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19(9):1639–1645. doi: 10.1101/gr.092759.109 PubMedCentralPubMedCrossRefGoogle Scholar
  22. Li A, Yn C, Wang X, Ren L, Yu J, Liu X, Yan J, Zhang L, Wu S, Li S (2013) A pyrosequencing-based metagenomic study of methane-producing microbial community in solid-state biogas reactor. Biotechnol Biofuels. doi: 10.1186/1754-6834-6-3 Google Scholar
  23. Ma LP, Li B, Zhang T (2014) Abundant rifampin resistance genes and significant correlations of antibiotic resistance genes and plasmids in various environments revealed by metagenomic analysis. Appl Microbiol Biot. doi: 10.1007/s00253-014-5511-3
  24. Mackelprang R, Waldrop MP, DeAngelis KM, David MM, Chavarria KL, Blazewicz SJ, Rubin EM, Jansson JK (2011) Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480(7377):368–371. doi: 10.1038/nature10576 PubMedCrossRefGoogle Scholar
  25. Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24(3):133–141. doi: 10.1016/j.tig.2007.12.007 PubMedCrossRefGoogle Scholar
  26. Metzker ML (2009) Sequencing technologies — the next generation. Nat Rev Genet 11(1):31–46. doi: 10.1038/nrg2626 PubMedCrossRefGoogle Scholar
  27. Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A, Wilkening J, Edwards RA (2008) The metagenomics RAST server – a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinforma 9(1):386. doi: 10.1186/1471-2105-9-386 CrossRefGoogle Scholar
  28. Nguyen HD, Cao B, Mishra B, Boyanov MI, Kemner KM, Fredrickson JK, Beyenal H (2012) Microscale geochemical gradients in Hanford 300 Area sediment biofilms and influence of uranium. Water Res 46(1):227–234. doi: 10.1016/j.watres.2011.10.054 PubMedCrossRefGoogle Scholar
  29. Noor E, Eden E, Milo R, Alon U (2010) Central carbon metabolism as a minimal biochemical walk between precursors for biomass and energy. Mol Cell 39(5):809–820. doi: 10.1016/j.molcel.2010.08.031 PubMedCrossRefGoogle Scholar
  30. Novak JT, Chon DH, Curtis B-A, Doyle M (2007) Biological solids reduction using the cannibal process. Water Environ Res 79(12):2380–2386. doi: 10.2175/106143007x183862 PubMedCrossRefGoogle Scholar
  31. Nunoura T, Hirai M, Imachi H, Miyazaki M, Makita H, Hirayama H, Furushima Y, Yamamoto H, Takai K (2010) Kosmotoga arenicorallina sp. nov. a thermophilic and obligately anaerobic heterotroph isolated from a shallow hydrothermal system occurring within a coral reef, southern part of the Yaeyama Archipelago, Japan, reclassification of Thermococcoides shengliensis as Kosmotoga shengliensis comb. nov., and emended description of the genus Kosmotoga. Arch Microbiol 192(10):811–819. doi: 10.1007/s00203-010-0611-7 PubMedCrossRefGoogle Scholar
  32. Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY, Cohoon M, de Crecy-Lagard V, Diaz N, Disz T, Edwards R, Fonstein M, Frank ED, Gerdes S, Glass EM, Goesmann A, Hanson A, Iwata-Reuyl D, Jensen R, Jamshidi N, Krause L, Kubal M, Larsen N, Linke B, McHardy AC, Meyer F, Neuweger H, Olsen G, Olson R, Osterman A, Portnoy V, Pusch GD, Rodionov DA, Ruckert C, Steiner J, Stevens R, Thiele I, Vassieva O, Ye Y, Zagnitko O, Vonstein V (2005) The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 33(17):5691–5702. doi: 10.1093/nar/gki866 PubMedCentralPubMedCrossRefGoogle Scholar
  33. Palatsi J, Illa J, Prenafeta-Boldú FX, Laureni M, Fernandez B, Angelidaki I, Flotats X (2010) Long-chain fatty acids inhibition and adaptation process in anaerobic thermophilic digestion: batch tests, microbial community structure and mathematical modelling. Bioresour Technol 101(7):2243–2251. doi: 10.1016/j.biortech.2009.11.069 PubMedCrossRefGoogle Scholar
  34. Palatsi J, Viñas M, Guivernau M, Fernandez B, Flotats X (2011) Anaerobic digestion of slaughterhouse waste: main process limitations and microbial community interactions. Bioresour Technol 102(3):2219–2227. doi: 10.1016/j.biortech.2010.09.121 PubMedCrossRefGoogle Scholar
  35. Papagianni M (2012) Recent advances in engineering the central carbon metabolism of industrially important bacteria. Microb Cell Fact 11(50)Google Scholar
  36. Pérez-Elvira SI, Nieto Diez P, Fdz-Polanco F (2006) Sludge minimisation technologies. Rev Environ Sci Bio Technol 5(4):375–398. doi: 10.1007/s11157-005-5728-9 CrossRefGoogle Scholar
  37. Pfister CA, Meyer F, Antonopoulos DA (2010) Metagenomic profiling of a microbial assemblage associated with the California Mussel: a node in networks of carbon and nitrogen cycling. PLoS ONE 5(5):e10518. doi: 10.1371/journal.pone.0010518 PubMedCentralPubMedCrossRefGoogle Scholar
  38. Prosser JI (2010) Replicate or lie. Environ Microbiol 12(7):1806–1810. doi: 10.1111/j.1462-2920.2010.02201.x PubMedCrossRefGoogle Scholar
  39. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glockner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35(21):7188–7196. doi: 10.1093/nar/gkm864 PubMedCentralPubMedCrossRefGoogle Scholar
  40. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto J-M, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Doré J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Antolin M, Artiguenave F, Blottiere H, Borruel N, Bruls T, Casellas F, Chervaux C, Cultrone A, Delorme C, Denariaz G, Dervyn R, Forte M, Friss C, van de Guchte M, Guedon E, Haimet F, Jamet A, Juste C, Kaci G, Kleerebezem M, Knol J, Kristensen M, Layec S, Le Roux K, Leclerc M, Maguin E, Melo Minardi R, Oozeer R, Rescigno M, Sanchez N, Tims S, Torrejon T, Varela E, de Vos W, Winogradsky Y, Zoetendal E, Bork P, Ehrlich SD, Wang J (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285):59–65. doi: 10.1038/nature08821 PubMedCentralPubMedCrossRefGoogle Scholar
  41. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41(D1):D590–D596. doi: 10.1093/nar/gks1219 PubMedCentralPubMedCrossRefGoogle Scholar
  42. Rincón B, Borja R, González JM, Portillo MC, Sáiz-Jiménez C (2008) Influence of organic loading rate and hydraulic retention time on the performance, stability and microbial communities of one-stage anaerobic digestion of two-phase olive mill solid residue. Biochem Eng J 40(2):253–261. doi: 10.1016/j.bej.2007.12.019 CrossRefGoogle Scholar
  43. Rivière D, Desvignes V, Pelletier E, Chaussonnerie S, Guermazi S, Weissenbach J, Li T, Camacho P, Sghir A (2009) Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME J 3(6):700–714. doi: 10.1038/ismej.2009.2 PubMedCrossRefGoogle Scholar
  44. Sahlstrom L (2003) A review of survival of pathogenic bacteria in organic waste used in biogas plants. Bioresour Technol 87:161–166PubMedCrossRefGoogle Scholar
  45. Shi P, Jia S, Zhang X-X, Zhang T, Cheng S, Li A (2013) Metagenomic insights into chlorination effects on microbial antibiotic resistance in drinking water. Water Res 47(1):111–120. doi: 10.1016/j.watres.2012.09.046 PubMedCrossRefGoogle Scholar
  46. Shin SG, Lee S, Lee C, Hwang K, Hwang S (2010) Qualitative and quantitative assessment of microbial community in batch anaerobic digestion of secondary sludge. Bioresour Technol 101(24):9461–9470. doi: 10.1016/j.biortech.2010.07.081 PubMedCrossRefGoogle Scholar
  47. Sun L, Randall CW, Novak JT (2010) The influence of sludge interchange times on the oxic–settling–anoxic process. Water Environ Res 82(6):519–523. doi: 10.2175/106143009x12487095236711 PubMedCrossRefGoogle Scholar
  48. Supaphol S, Jenkins SN, Intomo P, Waite IS, O’Donnell AG (2011) Microbial community dynamics in mesophilic anaerobic co-digestion of mixed waste. Bioresour Technol 102(5):4021–4027. doi: 10.1016/j.biortech.2010.11.124 PubMedCrossRefGoogle Scholar
  49. Traversi D, Villa S, Lorenzi E, Degan R, Gilli G (2012) Application of a real-time qPCR method to measure the methanogen concentration during anaerobic digestion as an indicator of biogas production capacity. J Environ Manag 111:173–177. doi: 10.1016/j.jenvman.2012.07.021 CrossRefGoogle Scholar
  50. Tringe SG (2005) Comparative metagenomics of microbial communities. Science 308(5721):554–557. doi: 10.1126/science.1107851 PubMedCrossRefGoogle Scholar
  51. Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161(1–3):291–314CrossRefGoogle Scholar
  52. Ye L, Zhang T (2012) Bacterial communities in different sections of a municipal wastewater treatment plant revealed by 16S rDNA 454 pyrosequencing. Appl Microbiol Biot 97(6):2381–2690. doi: 10.1007/s00253-012-4082-4 Google Scholar
  53. Yu K, Zhang T (2013) Construction of customized sub-databases from NCBI-nr database for rapid annotation of huge metagenomic datasets using a combined BLAST and MEGAN approach. PLoS ONE 8(4):e59831. doi: 10.1371/journal.pone.0059831 PubMedCentralPubMedCrossRefGoogle Scholar
  54. Yu Y, Lee C, Hwang S (2005) Analysis of community structures in anaerobic processes using a quantitative real-time PCR method. Water Sci Technol 52(1–2):85–91PubMedGoogle Scholar
  55. Zhang T, Shao M-F, Ye L (2011) 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. ISME J 6(6):1137–1147. doi: 10.1038/ismej.2011.188 PubMedCentralPubMedCrossRefGoogle Scholar
  56. Zhou H-W, Li D-F, Tam NF-Y, Jiang X-T, Zhang H, Sheng H-F, Qin J, Liu X, Zou F (2010) BIPES, a cost-effective high-throughput method for assessing microbial diversity. ISME J 5(4):741–749. doi: 10.1038/ismej.2010.160 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ying Yang
    • 1
  • Ke Yu
    • 1
  • Yu Xia
    • 1
  • Frankie T. K. Lau
    • 2
  • Daniel T. W. Tang
    • 2
  • Wing Cheong Fung
    • 2
  • Herbert H. P. Fang
    • 1
  • Tong Zhang
    • 1
    Email author
  1. 1.Environmental Biotechnology Laboratory, Department of Civil EngineeringUniversity of Hong KongHong KongChina
  2. 2.Drainage Services DepartmentGovernment of the Hong Kong Special Administrative RegionHong KongChina

Personalised recommendations