Applied Microbiology and Biotechnology

, Volume 98, Issue 10, pp 4771–4780 | Cite as

Straw- and slurry-associated prokaryotic communities differ during co-fermentation of straw and swine manure

  • Jiabao Li
  • Junpeng Rui
  • Zhaojun Pei
  • Xiaori Sun
  • Shiheng Zhang
  • Zhiying Yan
  • Yuanpeng Wang
  • Xiaofeng Liu
  • Tao Zheng
  • Xiangzhen Li
Bioenergy and biofuels

Abstract

Anaerobic co-fermentation of straw and manure is widely used for waste treatment and biogas production. However, the differences between the straw- and slurry-associated prokaryotic communities, their dynamic changes throughout the co-fermentation process, and their correlations with bioreactor performance are not fully understood. To address these questions, we investigated the prokaryotic community compositions and the dynamics of prokaryotes attached to the straw and in the slurry during co-fermentation of wheat straw and swine manure using pyrosequencing technique. The results showed that straw- and slurry-associated prokaryotes were different in their structure and function. Straw-associated prokaryotic communities were overrepresented by the phyla Spirochaetes and Fibrobacteres, while Synergistetes and Euryarchaeota were more abundant in the slurry. The straw-associated candidate class TG3, genera Fibrobacter, Bacteroides, Acetivibrio, Clostridium III, Papillibacter, Treponema, Sedimentibacter, and Lutispora may specialize in substrate hydrolysis. Propionate was the most abundant volatile fatty acid in the slurry, and it was probably degraded through syntrophic oxidation by the genera Pelotomaculum, Methanoculleus, and Methanosaeta. The protein-fermenting bacteria Aminobacterium and Cloacibacillus were much abundant in the slurry, indicating that proteins are important substrates in the co-fermentation. This study provided a better understanding of the anaerobic co-fermentation process that is driven by spatially differentiated microbiota.

Keywords

Co-fermentation Straw Swine manure Prokaryotic community 16S rRNA gene pyrosequencing 

Supplementary material

253_2014_5629_MOESM1_ESM.xlsx (55 kb)
ESM 1(XLSX 55 kb)

References

  1. Barber RD, Zhang L, Harnack M, Olson MV, Kaul R, Ingram-Smith C, Smith KS (2011) Complete genome sequence of Methanosaeta concilii, a specialist in aceticlastic methanogenesis. J Bacteriol 193(14):3668–3669PubMedCentralPubMedCrossRefGoogle Scholar
  2. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336PubMedCentralPubMedCrossRefGoogle Scholar
  3. Cheng L, Qiu TL, Li X, Wang WD, Deng Y, Yin XB, Zhang H (2008) Isolation and characterization of Methanoculleus receptaculi sp. nov. from Shengli oil field, China. FEMS Microbiol Lett 285(1):65–71PubMedCrossRefGoogle Scholar
  4. Chertkov O, Sikorski J, Brambilla E, Lapidus A, Copeland A, Glavina Del Rio T, Nolan M, Lucas S, Tice H, Cheng JF, Han C, Detter JC, Bruce D, Tapia R, Goodwin L, Pitluck S, Liolios K, Ivanova N, Mavromatis K, Ovchinnikova G, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Spring S, Rohde M, Goker M, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP (2010) Complete genome sequence of Aminobacterium colombiense type strain (ALA-1). Stand Genomic Sci 2(3):280–289PubMedCentralPubMedCrossRefGoogle Scholar
  5. de Bok FA, Harmsen HJ, Plugge CM, de Vries MC, Akkermans AD, de Vos WM, Stams AJ (2005) The first true obligately syntrophic propionate-oxidizing bacterium, Pelotomaculum schinkii sp. nov., co-cultured with Methanospirillum hungatei, and emended description of the genus Pelotomaculum. Int J Syst Evol Microbiol 55(Pt 4):1697–1703PubMedCrossRefGoogle Scholar
  6. Deng Y, He Z, Xu M, Qin Y, Van Nostrand JD, Wu L, Roe BA, Wiley G, Hobbie SE, Reich PB, Zhou J (2012) Elevated carbon dioxide alters the structure of soil microbial communities. Appl Environ Microbiol 78(8):2991–2995PubMedCentralPubMedCrossRefGoogle Scholar
  7. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16):2194–2200PubMedCentralPubMedCrossRefGoogle Scholar
  8. Ferrer P, Cambra-Lopez M, Cerisuelo A, Penaranda DS, Moset V (2014) The use of agricultural substrates to improve methane yield in anaerobic co-digestion with pig slurry: effect of substrate type and inclusion level. Waste Manag 34(1):196–203PubMedCrossRefGoogle Scholar
  9. Gallert C, Winter J (2008) Propionic acid accumulation and degradation during restart of a full-scale anaerobic biowaste digester. Bioresour Technol 99:170–178PubMedCrossRefGoogle Scholar
  10. Ganesan A, Chaussonnerie S, Tarrade A, Dauga C, Bouchez T, Pelletier E, Le Paslier D, Sghir A (2008) Cloacibacillus evryensis gen. nov., sp. nov., a novel asaccharolytic, mesophilic, amino-acid-degrading bacterium within the phylum 'Synergistetes', isolated from an anaerobic sludge digester. Int J Syst Evol Microbiol 58(Pt 9):2003–2012PubMedCrossRefGoogle Scholar
  11. Hanreich A, Schimpf U, Zakrzewski M, Schluter A, Benndorf D, Heyer R, Rapp E, Puhler A, Reichl U, Klocke M (2013) Metagenome and metaproteome analyses of microbial communities in mesophilic biogas-producing anaerobic batch fermentations indicate concerted plant carbohydrate degradation. Syst Appl Microbiol 36(5):330–338PubMedCrossRefGoogle Scholar
  12. Hess M, Sczyrba A, Egan R, Kim T-W, Chokhawala H, Schroth G, Luo S, Clark DS, Chen F, Zhang T, Mackie RI, Pennacchio LA, Tringe SG, Visel A, Woyke T, Wang Z, Rubin EM (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331(6016):463–467PubMedCrossRefGoogle Scholar
  13. Hongoh Y, Deevong P, Hattori S, Inoue T, Noda S, Noparatnaraporn N, Kudo T, Ohkuma M (2006) Phylogenetic diversity, localization, and cell morphologies of members of the candidate phylum TG3 and a subphylum in the phylum Fibrobacteres, recently discovered bacterial groups dominant in termite guts. Appl Environ Microbiol 72(10):6780–6788PubMedCentralPubMedCrossRefGoogle Scholar
  14. Hongoh Y, Deevong P, Inoue T, Moriya S, Trakulnaleamsai S, Ohkuma M, Vongkaluang C, Noparatnaraporn N, Kudo T (2005) Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl Environ Microbiol 71(11):6590–6599PubMedCentralPubMedCrossRefGoogle Scholar
  15. Imachi H, Aoi K, Tasumi E, Saito Y, Yamanaka Y, Saito Y, Yamaguchi T, Tomaru H, Takeuchi R, Morono Y, Inagaki F, Takai K (2011) Cultivation of methanogenic community from subseafloor sediments using a continuous-flow bioreactor. ISME J 5(12):1913–1925PubMedCentralPubMedCrossRefGoogle Scholar
  16. Ishii S, Kosaka T, Hori K, Hotta Y, Watanabe K (2005) Coaggregation facilitates interspecies hydrogen transfer between Pelotomaculum thermopropionicum and Methanothermobacter thermautotrophicus. Appl Environ Microbiol 71(12):7838–7845PubMedCentralPubMedCrossRefGoogle Scholar
  17. Jaenicke S, Ander C, Bekel T, Bisdorf R, Dröge M, Gartemann K-H, Jünemann S, Kaiser O, Krause L, Tille F, Zakrzewski M, Pühler A, Schlüter A, Goesmann A (2011) Comparative and joint analysis of two metagenomic datasets from a biogas fermenter obtained by 454-pyrosequencing. PLoS ONE 6(1):e14519PubMedCentralPubMedCrossRefGoogle Scholar
  18. Li A, Chu Y, Wang X, Ren L, Yu J, Liu X, Yan J, Zhang L, Wu S, Li S (2013) A pyrosequencing-based metagenomic study of methane-producing microbial community in solid-state biogas reactor. Biotechnol Biofuels 6(1):3PubMedCentralPubMedCrossRefGoogle Scholar
  19. Li XZ, Rui JP, Mao YJ, Yannarell A, Mackie R (2014) Dynamics of the bacterial community structure in the rhizosphere of a maize cultivar. Soil Biol Biochem 68:392–401CrossRefGoogle Scholar
  20. Liu FH, Wang SB, Zhang JS, Zhang J, Yan X, Zhou HK, Zhao GP, Zhou ZH (2009) The structure of the bacterial and archaeal community in a biogas digester as revealed by denaturing gradient gel electrophoresis and 16S rDNA sequencing analysis. J Appl Microbiol 106(3):952–966PubMedCrossRefGoogle Scholar
  21. Looft T, Levine UY, Stanton TB (2013) Cloacibacillus porcorum sp. nov., a mucin-degrading bacterium from the swine intestinal tract and emended description of the genus Cloacibacillus. Int J Syst Evol Microbiol 63(Pt 6):1960–1966PubMedCentralPubMedCrossRefGoogle Scholar
  22. Luo G, Angelidaki I (2013) Co-digestion of manure and whey for in situ biogas upgrading by the addition of H2: process performance and microbial insights. Appl Microbiol Biotechnol 97(3):1373–1381PubMedCrossRefGoogle Scholar
  23. McInerney MJ, Sieber JR, Gunsalus RP (2009) Syntrophy in anaerobic global carbon cycles. Curr Opin Biotechnol 20(6):623–632PubMedCentralPubMedCrossRefGoogle Scholar
  24. Muller N, Worm P, Schink B, Stams AJ, Plugge CM (2010) Syntrophic butyrate and propionate oxidation processes: from genomes to reaction mechanisms. Environ Microbiol Rep 2(4):489–499PubMedCrossRefGoogle Scholar
  25. Nelson MC, Morrison M, Schanbacher F, Yu Z (2012) Shifts in microbial community structure of granular and liquid biomass in response to changes to infeed and digester design in anaerobic digesters receiving food-processing wastes. Bioresour Technol 107:135–143PubMedCrossRefGoogle Scholar
  26. Nelson MC, Morrison M, Yu Z (2011) A meta-analysis of the microbial diversity observed in anaerobic digesters. Bioresour Technol 102(4):3730–3739PubMedCrossRefGoogle Scholar
  27. O'Sullivan CA, Burrell PC, Clarke WP, Blackall LL (2005) Structure of a cellulose degrading bacterial community during anaerobic digestion. Biotechnol Bioeng 92(7):871–878PubMedCrossRefGoogle Scholar
  28. Rademacher A, Zakrzewski M, Schluter A, Schonberg M, Szczepanowski R, Goesmann A, Puhler A, Klocke M (2012) Characterization of microbial biofilms in a thermophilic biogas system by high-throughput metagenome sequencing. FEMS Microbiol Ecol 79(3):785–799PubMedCrossRefGoogle Scholar
  29. Sieber JR, McInerney MJ, Gunsalus RP (2012) Genomic insights into syntrophy: the paradigm for anaerobic metabolic cooperation. Annu Rev Microbiol 66:429–452PubMedCrossRefGoogle Scholar
  30. Stams AJ, Plugge CM (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7(8):568–577PubMedCrossRefGoogle Scholar
  31. Sundberg C, Al-Soud WA, Larsson M, Alm E, Shakeri Yekta S, Svensson BH, Sorensen SJ, Karlsson A (2013) 454-pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters. FEMS Microbiol Ecol 85(3):612–626PubMedCrossRefGoogle Scholar
  32. Supaphol S, Jenkins SN, Intomo P, Waite IS, O'Donnell AG (2011) Microbial community dynamics in mesophilic anaerobic co-digestion of mixed waste. Bioresour Technol 102(5):4021–4027PubMedCrossRefGoogle Scholar
  33. Syutsubo K, Nagaya Y, Sakai S, Miya A (2005) Behavior of cellulose-degrading bacteria in thermophilic anaerobic digestion process. Water Sci Technol 52(1–2):79–84PubMedGoogle Scholar
  34. Tamaki H, Wright CL, Li X, Lin Q, Hwang C, Wang S, Thimmapuram J, Kamagata Y, Liu WT (2011) Analysis of 16S rRNA amplicon sequencing options on the Roche/454 next-generation titanium sequencing platform. PLoS ONE 6(9):e25263PubMedCentralPubMedCrossRefGoogle Scholar
  35. Tang YQ, Shigematsu T, Morimura S, Kida K (2005) Microbial community analysis of mesophilic anaerobic protein degradation process using bovine serum albumin (BSA)-fed continuous cultivation. J Biosci Bioeng 99(2):150–164PubMedCrossRefGoogle Scholar
  36. Town JR, Links MG, Fonstad TA, Dumonceaux TJ (2014) Molecular characterization of anaerobic digester microbial communities identifies microorganisms that correlate to reactor performance. Bioresour Technol 151:249–257PubMedCrossRefGoogle Scholar
  37. Tzollas NM, Zachariadis GA, Anthemidis AN, Stratis JA (2010) A new approach to indophenol blue method for determination of ammonium in geothermal waters with high mineral content. Int J Environ Anal Chem 90(2):115–126CrossRefGoogle Scholar
  38. Werner JJ, Knights D, Garcia ML, Scalfone NB, Smith S, Yarasheski K, Cummings TA, Beers AR, Knight R, Angenent LT (2011) Bacterial community structures are unique and resilient in full-scale bioenergy systems. Proc Natl Acad Sci USA 108(10):4158–4163PubMedCentralPubMedCrossRefGoogle Scholar
  39. Wu CG, Dong XZ, Liu XL (2007) Syntrophomonas wolfei subsp. methylbutyratica subsp. nov., and assignment of Syntrophomonas wolfei subsp. saponavida to Syntrophomonas saponavida sp. nov. comb. nov. Syst Appl Microbiol 30(5):376–380PubMedCrossRefGoogle Scholar
  40. Ye J, Li D, Sun Y, Wang G, Yuan Z, Zhen F, Wang Y (2013) Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure. Waste Manag 33(12):2653–2658PubMedCrossRefGoogle Scholar
  41. Zakrzewski M, Goesmann A, Jaenicke S, Junemann S, Eikmeyer F, Szczepanowski R, Al-Soud WA, Sorensen S, Puhler A, Schluter A (2012) Profiling of the metabolically active community from a production-scale biogas plant by means of high-throughput metatranscriptome sequencing. J Biotechnol 158(4):248–258PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jiabao Li
    • 1
  • Junpeng Rui
    • 1
  • Zhaojun Pei
    • 2
  • Xiaori Sun
    • 3
  • Shiheng Zhang
    • 1
  • Zhiying Yan
    • 1
  • Yuanpeng Wang
    • 4
  • Xiaofeng Liu
    • 1
  • Tao Zheng
    • 3
  • Xiangzhen Li
    • 1
  1. 1.Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of BiologyChinese Academy of SciencesSichuanPeople’s Republic of China
  2. 2.College of Environment and Civil EngineeringChengdu University of TechnologySichuanPeople’s Republic of China
  3. 3.College of Biological and Pharmaceutical EngineeringNanjing University of TechnologyJiangsuPeople’s Republic of China
  4. 4.Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical EngineeringXiamen UniversityFujianPeople’s Republic of China

Personalised recommendations