Applied Microbiology and Biotechnology

, Volume 98, Issue 12, pp 5531–5540 | Cite as

Aspergillus niger RhaR, a regulator involved in l-rhamnose release and catabolism

  • Birgit S. Gruben
  • Miaomiao Zhou
  • Ad Wiebenga
  • Joost Ballering
  • Karin M. Overkamp
  • Peter J. Punt
  • Ronald P. de VriesEmail author
Applied genetics and molecular biotechnology


The genome of the filamentous fungus Aspergillus niger is rich in genes encoding pectinases, a broad class of enzymes that have been extensively studied due to their use in industrial applications. The sequencing of the A. niger genome provided more knowledge concerning the individual pectinolytic genes, but little is known about the regulatory genes involved in pectin degradation. Understanding regulation of the pectinolytic genes provides a tool to optimize the production of pectinases in this industrially important fungus. This study describes the identification and characterization of one of the activators of pectinase-encoding genes, RhaR. Inactivation of the gene encoding this regulator resulted in down-regulation of genes involved in the release of l-rhamnose from the pectin substructure rhamnogalacturonan I, as well as catabolism of this monosaccharide. The rhaR disruptant was unable to grow on l-rhamnose, but only a small reduction in growth on pectin was observed. This is likely caused by the presence of a second, so far unknown regulator that responds to the presence of d-galacturonic acid.


Aspergillus niger l-rhamnose catabolism l-rhamnose release Transcriptional regulation Pectin degradation 



BS was supported by a grant of the Dutch Technology Foundation STW, Applied Science division of NWO and the Technology Program of the Ministry of Economic Affairs UGC 07938 to RPdV. MZ was supported by a grant from the Netherlands Organisation for Scientific Research (NWO) and the Netherlands Genomics Initiative 93511035 to RPdV.

Supplementary material

253_2014_5607_MOESM1_ESM.pdf (1.3 mb)
ESM 1 (PDF 1329 kb)


  1. Andersen MR, Salazar MP, Schaap PJ, van der Vondervoort PJI, Culley D, Thykaer J, Frisvad JC, Nielsen KF, Albang R, Albermann K, Berka RM, Braus GH, Braus-Stromeyer SA, Corrochano LM, Dai Z, van Dijck PWM, Hofmann G, Lasure LL, Magnuson JK, Menke H, Meijer M, Meijer SL, Nielsen JB, Nielsen ML, van Ooyen AJJ, Pel HJ, Poulsen L, Samson RA, Stam H, Tsang A, van den Brink JM, Atkins A, Aerts A, Shapiro H, Pangilinan J, Salamov A, Lou Y, Lindquist E, Lucas S, Grimwood J, Grigoriev IV, Kubicek CP, Martinez D, van Peij NNME, Roubos JA, Nielsen J, Baker SE (2011) Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88. Genome Res 21:885–897PubMedCentralPubMedCrossRefGoogle Scholar
  2. Battaglia E, Visser L, Nijssen A, van Veluw J, Wösten HAB, de Vries RP (2011) Analysis of regulation of pentose utilisation in Aspergillus niger reveals evolutionary adaptations in the Eurotiales. Stud Mycol 69:31–38PubMedCentralPubMedCrossRefGoogle Scholar
  3. Bos CJ, Debets AJM, Swart K, Huybers A, Kobus G, Slakhorst SM (1988) Genetic analysis and the construction of master strains for assignment of genes to six linkage groups in Aspergillus niger. Curr Genet 14:437–443PubMedCrossRefGoogle Scholar
  4. Coulier L, Zha Y, Bas R, Punt PJ (2013) Analysis of oligosaccharides in lignocellulosic biomass hydrolysates by high-performance anion-exchange chromatography coupled with mass spectrometry (HPAEC-MS). Bioresour Technol 133:221–231PubMedCrossRefGoogle Scholar
  5. Coutinho PM, Andersen MR, Kolenova K, vanKuyk PA, Benoit I, Gruben BS, Trejo-Aguilar B, Visser H, van Solingen P, Pakula T, Seiboth B, Battaglia E, Aguilar-Osorio G, de Jong JF, Ohm RA, Aguilar M, Henrissat B, Nielsen J, Stalbrand H, de Vries RP (2009) Post-genomic insights into the plant polysaccharide degradation potential of Aspergillus nidulans and comparison to Aspergillus niger and Aspergillus oryzae. Fungal Genet Biol 46(Suppl 1):S161–S169PubMedCrossRefGoogle Scholar
  6. Crabtree J, Angiuoli SV, Wortman JR, White OR (2007) Sybil: methods and software for multiple genome comparison and visualization. Methods Mol Biol 408:93–108PubMedCrossRefGoogle Scholar
  7. Daas PJH, Meyer-Hansen K, Schols HA, De Ruiter GA, Voragen AGJ (1999) Investigation of the non-esterified galacturonic acid distribution in pectin with endopolygalacturonase. Carbohydr Res 218:135–145CrossRefGoogle Scholar
  8. de Vries RP, Visser J (2001) Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev 65:497–522PubMedCentralPubMedCrossRefGoogle Scholar
  9. de Vries RP, Kester HCM, Poulsen CH, Benen JAE, Visser J (2000) Synergy between accessory enzymes from Aspergillus in the degradation of plant cell wall polysaccharides. Carbohydr Res 327:401–410PubMedCrossRefGoogle Scholar
  10. de Vries RP, Jansen J, Aguilar G, Parenicová L, Benen JAE, Joosten V, Wulfert F, Visser J (2002) Expression profiling of pectinolytic genes from Aspergillus niger. FEBS Lett 530:41–47PubMedCrossRefGoogle Scholar
  11. de Vries RP, Burgers K, van de Vondervoort PJI, Frisvad JC, Samson RA, Visser J (2004) A new black Aspergillus species, A. vadensis, is a promising host for homologous and heterologous protein production. Appl Environ Microbiol 70:3954–3959PubMedCentralPubMedCrossRefGoogle Scholar
  12. Delgado L, Trejo BA, Huitron C, Aguilar G (1992) Pectin lyase from Aspergillus sp. CH-Y-1043. Appl Microbiol Biotechnol 39:515–519CrossRefGoogle Scholar
  13. Ha MA, Vietor RJ, Jardine GD, Apperley DC, Jarvis MC (2005) Conformation and mobility of the arabinan and galactan side-chains of pectin. Phytochemistry 66(15):1817–1824PubMedCrossRefGoogle Scholar
  14. Kashyap DR, Vohra PK, Chopra S, Tewari R (2001) Applications of pectinases in the commercial sector: a review. Bioresour Technol 77(3):215–227PubMedCrossRefGoogle Scholar
  15. Kester HCM, Benen JAE, Visser J (1999) The exopolygalacturonase from Aspergillus tubingensis is also active on xylogalacturonan. Biotechnol Appl Biochem 30:53–57PubMedGoogle Scholar
  16. Kirk O, Borchert TV, Fuglsang CC (2002) Industrial enzyme applications. Curr Opin Biotechnol 13(4):345–351PubMedCrossRefGoogle Scholar
  17. Koivistoinen OM, Hilditch S, Voutilainen SP, Boer H, Penttilä M, Richard P (2008) Identification in the yeast Pichia stipitis of the first l-rhamnose-1-dehydrogenase gene. FEBS J 275(10):2482–2488PubMedCrossRefGoogle Scholar
  18. Koivistoinen OM, Arvas M, Headman JR, Andberg M, Penttilä M, Jeffries TW, Richard P (2012) Characterisation of the gene cluster for l-rhamnose catabolism in the yeast Scheffersomyces (Pichia) stipitis. Gene 492(1):177–185PubMedCrossRefGoogle Scholar
  19. Kusters-van Someren MA, Harmsen JAM, Kester HCM, Visser J (1991) The structure of the Aspergillus niger pelA gene and its expression in Aspergillus niger and Aspergillus nidulans. Curr Genet 20:293–299PubMedCrossRefGoogle Scholar
  20. Kusters-van Someren M, Flipphi M, de Graaff LH, van den Broeck H, Kester H, Hinnen A, Visser J (1992) Characterisation of the Aspergillus niger pelB gene: structure and regulation of expression. Mol Gen Genet 234:113–120PubMedGoogle Scholar
  21. Lau JM, McNeil M, Darvill AG, Albersheim P (1985) Structure of the backbone of rhamnogalacturonan I, a pectic polysaccharide in the primary cell walls of plants. Carbohydr Res 137:111–125CrossRefGoogle Scholar
  22. Martens-Uzunova ES, Zandleven JS, Benen JA, Awad H, Kools HJ, Beldman G, Voragen AG, Van den Berg JA, Schaap PJ (2006) A new group of exo-acting family 28 glycoside hydrolases of Aspergillus niger that are involved in pectin degradation. Biochem J 400(1):43–52PubMedCentralPubMedCrossRefGoogle Scholar
  23. Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11(3):266–277PubMedCrossRefGoogle Scholar
  24. O'Neill MA, Warrenfeltz D, Kates K, Pellerin P, Doci T, Darvill AG, Albersheim P (1996) Rhamnogalacturonan-II, a pectic polysaccharide in the walls of growing plant cell, forms a dimer that is covalently-linked by a borate ester. J Biol Chem 271:22923–22930PubMedCrossRefGoogle Scholar
  25. Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, Turner G, de Vries RP, Albang R, Albermann K, Andersen MR, Bendtsen JD, Benen JA, van den Berg M, Breestraat S, Caddick MX, Contreras R, Cornell M, Coutinho PM, Danchin EG, Debets AJ, Dekker P, van Dijck PW, van Dijk A, Dijkhuizen L, Driessen AJ, d'Enfert C, Geysens S, Goosen C, Groot GS, de Groot PW, Guillemette T, Henrissat B, Herweijer M, van den Hombergh JP, van den Hondel CA, van der Heijden RT, van der Kaaij RM, Klis FM, Kools HJ, Kubicek CP, van Kuyk PA, Lauber J, Lu X, van der Maarel MJ, Meulenberg R, Menke H, Mortimer MA, Nielsen J, Oliver SG, Olsthoorn M, Pal K, van Peij NN, Ram AF, Rinas U, Roubos JA, Sagt CM, Schmoll M, Sun J, Ussery D, Varga J, Vervecken W, van de Vondervoort PJ, Wedler H, Wosten HA, Zeng AP, van Ooyen AJ, Visser J, Stam H (2007) Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol 25(2):221–231PubMedCrossRefGoogle Scholar
  26. Perez S, Rodriguez-Carvajal MA, Doco T (2003) A complex plant cell wall polysaccharide: rhamnogalacturonan II. A structure in quest of a function. Biochimie 85(1–2):109–121PubMedCrossRefGoogle Scholar
  27. R Development Core Team. A language and environment for statistical computingGoogle Scholar
  28. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning -a laboratory manual., 2nd edn. Cold Spring Harbour Laboratory, Cold Spring Harbour, N.Y.Google Scholar
  29. Schols HA, Bakx EJ, Schipper D, Voragen AGJ (1995) A xylogalacturonan subunit present in the modified hairy regions of apple pectin. Carbohydr Res 279:265–279CrossRefGoogle Scholar
  30. van der Vlugt-Bergmans CJB, Meeuwsen PJA, Voragen AGJ, van Ooyen AJJ (2000) Endo-xylogalacturonan hydrolase, a novel pectinolytic enzyme. Appl Environ Microbiol 66:36–41PubMedCentralPubMedCrossRefGoogle Scholar
  31. van Peij N, Gielkens MMC, de Vries RP, Visser J, de Graaff LH (1998) The transcriptional activator XlnR regulates both xylanolytic and endoglucanase gene expression in Aspergillus niger. Appl Environ Microbiol 64(10):3615–3619PubMedCentralPubMedGoogle Scholar
  32. Vidal S, Doco T, Williams P, Pellerin P, York WS, O'Neill MA, Glushka J, Darvill AG, Albersheim P (2000) Structural characterization of the pectic polysaccharide rhamnogalacturonan II: evidence for the backbone location of the aceric acid-containing oligoglycosyl side chain. Carbohydr Res 326:227–294CrossRefGoogle Scholar
  33. Voragen AGJ, Coenen G, Verhoef RP, Schols HA (2009) Pectin, a versatile polysaccharide present in plant cell walls. Struct Chem 20:263–275CrossRefGoogle Scholar
  34. Watanabe S, Saimura M, Makino K (2008) Eukaryotic and bacterial gene clusters related to an alternative pathway of nonphosphorylated l-rhamnose metabolism. J Biol Chem 283(29):20372–20382PubMedCrossRefGoogle Scholar
  35. Willats WGT, Orfila C, Limberg G, Buchholt HC, van Alebeek G-JWM, Voragen AGJ, Marcus SE, Christensen TMIE, Mikkelson JD, Murray BS, Knox JP (2001) Modulation of the degree and pattern of methyl-esterification of pectic homogalacturonan in plant cell walls: implications for pectin methyl esterase action, matrix properties, and cell adhesion. J Biol Chem 276:19404–19413PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Birgit S. Gruben
    • 1
  • Miaomiao Zhou
    • 2
  • Ad Wiebenga
    • 2
  • Joost Ballering
    • 1
  • Karin M. Overkamp
    • 3
  • Peter J. Punt
    • 3
  • Ronald P. de Vries
    • 1
    • 2
    Email author
  1. 1.Microbiology & Kluyver Centre for Genomics of Industrial FermentationUtrecht UniversityUtrechtThe Netherlands
  2. 2.CBS-KNAW Fungal Biodiversity CentreUtrechtThe Netherlands
  3. 3.TNO Microbiology & Systems BiologyZeistThe Netherlands

Personalised recommendations