Applied Microbiology and Biotechnology

, Volume 98, Issue 10, pp 4737–4748 | Cite as

A freshwater bacterial strain, Shewanella sp. Lzh-2, isolated from Lake Taihu and its two algicidal active substances, hexahydropyrrolo[1,2-a]pyrazine-1,4-dione and 2, 3-indolinedione

  • Zhenghua Li
  • Shengqin Lin
  • Xianglong Liu
  • Jing Tan
  • Jianliang Pan
  • Hong Yang
Environmental biotechnology


Cyanobacterial blooms have become a serious problem in Lake Taihu during the last 20 years, and Microcystis aeruginosa and Synechococcus sp. are the two dominant species in cyanobacterial blooms of Lake Taihu. A freshwater bacterial strain, Shewanella sp. Lzh-2, with strong algicidal properties against harmful cyanobacteria was isolated from Lake Taihu. Two substances with algicidal activity secreted extracellularly by Shewanella sp. Lzh-2, S-2A and S-2B, were purified from the bacterial culture of strain Lzh-2 using ethyl acetate extraction, column chromatography, and high performance liquid chromatography (HPLC) in turn. The substances S-2A and S-2B were identified as hexahydropyrrolo[1,2-a]pyrazine-1,4-dione and 2, 3-indolinedione (isatin), respectively, based on liquid chromatography-mass spectrometry (LC-MS), gas chromatography-mass spectrometry (GC-MS), and hydrogen-nuclear magnetic resonance (H-NMR) analyses, making this the first report of their algicidal activity toward cyanobacteria. S-2A (hexahydropyrrolo[1,2-a]pyrazine-1,4-dione) had no algicidal effects against Synechococcus sp. BN60, but had a high level of algicidal activity against M. aeruginosa 9110. The LD50 value of S-2A against M. aeruginosa 9110 was 5.7 μg/ml. S-2B (2, 3-indolinedione) showed a potent algicidal effect against both M. aeruginosa 9110 and Synechococcus sp. BN60, and the LD50 value of S-2B against M. aeruginosa 9110 and Synechococcus sp. BN60 was 12.5 and 34.2 μg/ml, respectively. Obvious morphological changes in M. aeruginosa 9110 and Synechococcus sp. BN60 were observed after they were exposed to S-2A (or S-2B) for 24 h. Approximately, the algicidal activity, the concentration of S-2A and S-2B, and the cell density of Lzh-2 were positively related to each other during the cocultivation process. Overall, these findings increase our knowledge about algicidal substances secreted by algicidal bacteria and indicate that strain Lzh-2 and its two algicidal substances have the potential for use as a bio-agent in controlling cyanobacterial blooms in Lake Taihu.


Algicidal bacteria Cyanobacterial bloom Microcystis aeruginosa Synechococcus sp. 2, 3-indolinedione (isatin) Hexahydropyrrolo[1,2-a]pyrazine-1,4-dione 

Supplementary material

253_2014_5602_MOESM1_ESM.pdf (489 kb)
Electronic supplementary material contains phenotypic characteristics of strain Lzh-2, some details for purification (Fig. S1–Fig. S6) and identification (Fig. S7–Fig. S12) of the algicidal substances. (PDF 489 kb)


  1. Armando JW, Boghigian BA, Pfeifer BA (2012) LC-MS/MS quantification of short-chain acyl-CoA's in Escherichia coli demonstrates versatile propionyl-CoA synthetase substrate specificity. Lett Appl Microbiol 54(2):140–148. doi:10.1111/j.1472-765X.2011.03184.x PubMedCrossRefGoogle Scholar
  2. Bach MK, Magee WE (1962) Biochemical effects of isatin beta-thiosemicarbazone on development of vaccinia virus. Proc Soc Exp Biol Med Soc Exp Biol Med 110:565–567CrossRefGoogle Scholar
  3. Cai W, Wang H, Tian Y, Chen F, Zheng T (2011) Influence of a bacteriophage on the population dynamics of toxic dinoflagellates by lysis of algicidal bacteria. Appl Environ Microbiol 77(21):7837–7840. doi:10.1128/AEM.05783-11 PubMedCentralPubMedCrossRefGoogle Scholar
  4. Chen WM, Sheu FS, Sheu SY (2011) Novel L-amino acid oxidase with algicidal activity against toxic cyanobacterium Microcystis aeruginosa synthesized by a bacterium Aquimarina sp. Enzym Microb Technol 49(4):372–379. doi:10.1016/j.enzmictec.2011.06.016 CrossRefGoogle Scholar
  5. Grant G, Smith G, Sudhakar R (1988) Gas Chromatographic-Mass Spectrometric Analysis of the Curie-point Pyrolysis Products of Some Dipeptides and their Diketopiperazine. J Chem Soc Perkin Trans 2:203–211Google Scholar
  6. Hare CE, Demir E, Coyne KJ, Cary SC, Kirchman DL, Hutchins DA (2005) A bacterium that inhibits the growth of Pfiesteria piscicida and other dinoflagellates. Harmful Algae 4(2):221–234. doi:10.1016/j.hal.2004.03.001 CrossRefGoogle Scholar
  7. Haughey MA, Anderson MA, Whitney RD, Taylor WD, Losee RF (2000) Forms and fate of Cu in a source drinking water reservoir following CuSO4 treatment. Water Res 34(13):3440–3452. doi:10.1016/s0043-1354(00)00054-3 CrossRefGoogle Scholar
  8. Houston DR, Synstad B, Eijsink VG, Stark MJ, Eggleston IM, van Aalten DM (2004) Structure-based exploration of cyclic dipeptide chitinase inhibitors. J Med Chem 47(23):5713–5720. doi:10.1021/jm049940a PubMedCrossRefGoogle Scholar
  9. Imamura N, Motoike I, Noda M, Adachi K, Konno A, Fukami H (2000) Argimicin A, a novel anti-cyanobacterial compound produced by an algae-lysing bacterium. J Antibiot 53(11):1317–1319PubMedCrossRefGoogle Scholar
  10. Imamura N, Motoike I, Shimada N, Nishikori M, Morisaki H, Fukami H (2001) An efficient screening approach for anti-Microcystis compounds based on knowledge of aquatic microbial ecosystem. J Antibiot 54(7):582–587PubMedCrossRefGoogle Scholar
  11. Jarrahpour A, Khalili D, De Clercq E, Salmi C, Brunel JM (2007) Synthesis, antibacterial, antifungal and antiviral activity evaluation of some new bis-Schiff bases of isatin and their derivatives. Molecules 12(8):1720–1730PubMedCrossRefGoogle Scholar
  12. Jeong H, Yim JH, Lee C, Choi SH, Park YK, Yoon SH, Hur CG, Kang HY, Kim D, Lee HH, Park KH, Park SH, Park HS, Lee HK, Oh TK, Kim JF (2005) Genomic blueprint of Hahella chejuensis, a marine microbe producing an algicidal agent. Nucleic Acids Res 33(22):7066–7073. doi:10.1093/nar/gki1016 PubMedCentralPubMedCrossRefGoogle Scholar
  13. Jeong JH, Jin HJ, Sohn CH, Suh KH, Hong YK (2000) Algicidal activity of the seaweed Corallina pilulifera against red tide microalgae. J Appl Phycol 12(1):37–43. doi:10.1023/a:1008139129057 CrossRefGoogle Scholar
  14. Jeong SY, Ishida K, Ito Y, Okada S, Murakami M (2003) Bacillamide, a novel algicide from the marine bacterium, Bacillus sp. SY-1, against the harmful dinoflagellate, Cochlodinium polykrikoides. Tetrahedron Lett 44(43):8005–8007. doi:10.1016/j.tetlet.2003.08.115 CrossRefGoogle Scholar
  15. Jung SW, Kim BH, Katano T, Kong DS, Han MS (2008) Pseudomonas fluorescens HYK0210-SK09 offers species-specific biological control of winter algal blooms caused by freshwater diatom Stephanodiscus hantzschii. J Appl Microbiol 105(1):186–195. doi:10.1111/j.1365-2672.2008.03733.x PubMedCrossRefGoogle Scholar
  16. Kang YH, Kim JD, Kim BH, Kong DS, Han MS (2005) Isolation and characterization of a bio-agent antagonistic to diatom, Stephanodiscus hantzschii. J Appl Microbiol 98(5):1030–1038. doi:10.1111/j.1365-2672.2005.02533.x PubMedCrossRefGoogle Scholar
  17. Kim YS, Lee DS, Jeong SY, Lee WJ, Lee MS (2009) Isolation and characterization of a marine algicidal bacterium against the harmful raphidophyceae Chattonella marina. J Microbiol 47(1):9–18. doi:10.1007/s12275-008-0141-z PubMedCrossRefGoogle Scholar
  18. Kupinic M, Medic-Saric M, Movrin M, Maysinger D (1979) Antibacterial and antifungal activities of isatin N-Mannich bases. J Pharm Sci 68(4):459–462PubMedCrossRefGoogle Scholar
  19. Kwon SK, Park YK, Kim JF (2010) Genome-wide screening and identification of factors affecting the biosynthesis of prodigiosin by Hahella chejuensis, using Escherichia coli as a surrogate host. Appl Environ Microbiol 76(5):1661–1668. doi:10.1128/AEM.01468-09 PubMedCentralPubMedCrossRefGoogle Scholar
  20. Lee YS, Kim JD, Lim WA, Lee SG (2009) Survival and growth of Cochlodinium polykrikoides red tide after addition of yellow loess. J Environ Biol / Acad Environ Biol India 30(6):929–932Google Scholar
  21. Liu ZY, Zhou XN, Zhang HH, Wan L, Sun ZL (2011) An integrated method for degradation products detection and characterization using hybrid ion trap/time-of-flight mass spectrometry and data processing techniques: application to study of the degradation products of danofloxacin under stressed conditions. Anal Bioanal Chem 399(7):2475–2486. doi:10.1007/s00216-010-4629-0 PubMedCrossRefGoogle Scholar
  22. Lovejoy C, Bowman JP, Hallegraeff GM (1998) Algicidal effects of a novel marine Pseudoalteromonas isolate (class Proteobacteria, gamma subdivision) on harmful algal bloom species of the genera Chattonella, Gymnodinium, and Heterosigma. Appl Environ Microbiol 64(8):2806–2813PubMedCentralPubMedGoogle Scholar
  23. Mayali X, Azam F (2004) Algicidal bacteria in the sea and their impact on algal blooms. J Eukaryot Microbiol 51(2):139–144. doi:10.1111/j.1550-7408.2004.tb00538.x PubMedCrossRefGoogle Scholar
  24. Mayali X, Franks PJ, Azam F (2008) Cultivation and ecosystem role of a marine roseobacter clade-affiliated cluster bacterium. Appl Environ Microbiol 74(9):2595–2603. doi:10.1128/AEM.02191-07 PubMedCentralPubMedCrossRefGoogle Scholar
  25. Nakashima T, Kim D, Miyazaki Y, Yamaguchi K, Takeshita S, Oda T (2006a) Mode of action of an antialgal agent produced by a marine gammaproteobacterium against Chattonella marina. Aquat Microb Ecol 45(3):255–262. doi:10.3354/ame045255 CrossRefGoogle Scholar
  26. Nakashima T, Miyazaki Y, Matsuyama Y, Muraoka W, Yamaguchi K, Oda T (2006b) Producing mechanism of an algicidal compound against red tide phytoplankton in a marine bacterium gamma-proteobacterium. Appl Microbiol Biotechnol 73(3):684–690. doi:10.1007/s00253-006-0507-2 PubMedCrossRefGoogle Scholar
  27. Nowack B, Krug HF, Height M (2011) 120 years of nanosilver history: implications for policy makers. Environ Sci Technol. doi:10.1021/es103316q Google Scholar
  28. Ogata A, Hamaue N, Terado M, Minami M, Nagashima K, Tashiro K (2003) Isatin, an endogenous MAO inhibitor, improves bradykinesia and dopamine levels in a rat model of Parkinson’s disease induced by Japanese encephalitis virus. J Neurol Sci 206(1):79–83PubMedCrossRefGoogle Scholar
  29. Paerl HW, Xu H, McCarthy MJ, Zhu GW, Qin BQ, Li YP, Gardner WS (2011) Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): the need for a dual nutrient (N & P) management strategy. Water Res 45(5):1973–1983. doi:10.1016/j.watres.2010.09.018 PubMedCrossRefGoogle Scholar
  30. Pandeya SN, Sriram D, Nath G, De Clercq E (1999) Synthesis, antibacterial, antifungal and anti-HIV evaluation of Schiff and Mannich bases of isatin derivatives with 3-amino-2-methylmercapto quinazolin-4(3H)-one. Pharm Acta Helv 74(1):11–17PubMedCrossRefGoogle Scholar
  31. Qin BQ, Zhu GW, Gao G, Zhang YL, Li W, Paerl HW, Carmichael WW (2010) A drinking water crisis in Lake Taihu, China: linkage to climatic variability and lake management. Environ Manage 45(1):105–112. doi:10.1007/s00267-009-9393-6 PubMedCrossRefGoogle Scholar
  32. Ran R, Zhang W, Cui B, Xu Y, Han Z, Wu A, Li D, Zhang D, Wang C, Shi J (2013) A simple and rapid method for the determination of deoxynivalenol in human cells by UPLC-TOF-MS. Anal Methods 5:5637–5643CrossRefGoogle Scholar
  33. Ren HQ, Zhang P, Liu CH, Xue YR, Lian B (2010) The potential use of bacterium strain R219 for controlling of the bloom-forming cyanobacteria in freshwater lake. World J Microbiol Biotechnol 26:465–472CrossRefGoogle Scholar
  34. Rinta-Kanto JM, Ouellette AJA, Boyer GL, Twiss MR, Bridgeman TB, Wilhelm SW (2005) Quantification of toxic Microcystis spp. during the 2003 and 2004 blooms in western Lake Erie using quantitative real-time PCR. Environ Sci Technol 39(11):4198–4205. doi:10.1021/es048249u PubMedCrossRefGoogle Scholar
  35. Sakai H, Oguma K, Katayama H, Ohgaki S (2007) Effects of low or medium-pressure UV irradiation on the release of intracellular microcystin. Water Res 41(15):3458–3464. doi:10.1016/j.watres.2007.04.031 PubMedCrossRefGoogle Scholar
  36. Sigee DC, Glenn R, Andrews MJ, Bellinger EG, Butler RD, Epton HAS, Hendry RD (1999) Biological control of cyanobacteria: principles and possibilities. Hydrobiologia 395:161–172. doi:10.1023/a:1017097502124 CrossRefGoogle Scholar
  37. Su RQ, Yang XR, Zheng TL, Tian Y, Jiao NZ, Cai LZ, Hong HS (2007) Isolation and characterization of a marine algicidal bacterium against the toxic dinoflagellate Alexandrium tamarense. Harmful Algae 6(6):799–810. doi:10.1016/j.hal.2007.04.004 CrossRefGoogle Scholar
  38. Taizo S, akeshi T, Satomi N (2011) Algicidal activity and identification of an algicidal substance produced by marine Pseudomonas sp. C55a-2. Fish Sci : FS 77:397–402CrossRefGoogle Scholar
  39. Tian C, Liu XL, Tan J, Lin SQ, Li DT, Yang H (2012) Isolation, identification and characterization of an algicidal bacterium from Lake Taihu and preliminary studies on its algicidal compounds. J Environ Sci 24(10):1823–1831CrossRefGoogle Scholar
  40. Tian C, Tan J, Wu X, Ye WJ, Liu XL, Li DT, Yang H (2009) Spatiotemporal transition of bacterioplankton diversity in a large shallow hypertrophic freshwater lake, as determined by denaturing gradient gel electrophoresis. J Plankton Res 31(8):885–897. doi:10.1093/plankt/fbp028 CrossRefGoogle Scholar
  41. Wang XL, Gong LY, Liang SK, Han XR, Zhu CJ, Li YB (2005) Algicidal activity of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa. Harmful Algae 4(2):433–443. doi:10.1016/j.hal.2004.06.001 CrossRefGoogle Scholar
  42. Welschmeyer NA (1994) Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol Oceanogr 39(8):1985–1992CrossRefGoogle Scholar
  43. Wu X, Xi WY, Ye WJ, Yang H (2007) Bacterial community composition of a shallow hypertrophic freshwater lake in China, revealed by 16S rRNA gene sequences. FEMS Microbiol Ecol 61(1):85–96. doi:10.1111/j.1574-6941.2007.00326.x PubMedCrossRefGoogle Scholar
  44. XiuZhu D, Cai M (2001) Systematic identification manual of common bacteria. Science press, BeijingGoogle Scholar
  45. Yamamoto Y, Suzuki K (1990) Distribution and algal-lysing activity of fruiting myxobacteria in Lake Suwa. J Phycol 26:457–462CrossRefGoogle Scholar
  46. Yang F, Li X, Li Y, Wei H, Yu G, Yin L, Liang G, Pu Y (2013) Lysing activity of an indigenous algicidal bacterium Aeromonas sp. against Microcystis spp. isolated from Lake Taihu. Environ Technol 34(9–12):1421–1427PubMedCrossRefGoogle Scholar
  47. Ye WJ, Tan J, Liu XL, Lin SQ, Pan JL, Li DT, Yang H (2011) Temporal variability of cyanobacterial populations in the water and sediment samples of Lake Taihu as determined by DGGE and real-time PCR. Harmful Algae 10(5):472–479. doi:10.1016/j.hal.2011.03.002 CrossRefGoogle Scholar
  48. Zhang X, Liu Y, Yan K, Wu H (2007) Decolorization of anthraquinone-type dye by bilirubin oxidase-producing nonligninolytic fungus Myrothecium sp. IMER1. J Biosci Bioeng 104(2):104–110. doi:10.1263/jbb.104.104 PubMedCrossRefGoogle Scholar
  49. Zheng X, Zhang B, Zhang J, Huang L, Lin J, Li X, Zhou Y, Wang H, Yang X, Su J, Tian Y, Zheng T (2012) A marine algicidal actinomycete and its active substance against the harmful algal bloom species Phaeocystis globosa. Appl Microbiol Biotechnol. doi:10.1007/s00253-012-4617-8 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Zhenghua Li
    • 1
  • Shengqin Lin
    • 1
  • Xianglong Liu
    • 1
  • Jing Tan
    • 1
  • Jianliang Pan
    • 1
  • Hong Yang
    • 1
  1. 1.State Key Laboratory of Microbial metabolism, School of Life Science and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations