Applied Microbiology and Biotechnology

, Volume 98, Issue 12, pp 5417–5425 | Cite as

Effect of sodium butyrate on the assembly, charge variants, and galactosylation of antibody produced in recombinant Chinese hamster ovary cells

  • Jong Kwang Hong
  • Sang Min Lee
  • Kyung-Yong Kim
  • Gyun Min Lee
Biotechnological products and process engineering


Sodium butyrate (NaBu) is known to increase the specific productivity of recombinant Chinese hamster ovary (rCHO) cells. To understand the effects of NaBu on the product quality, rCHO cells producing monoclonal antibody (Mab) were cultivated at various concentrations of NaBu (0 to 4 mM). NaBu increased correctly assembled Mab. In the absence of NaBu, the proportions of intact Mab (2H2L) and heavy chain dimer (2H) were 81 and 15 %. At 1 mM NaBu, the proportion of 2H2L increased to 93 %, whereas the proportion of 2H decreased to 2 %. No further increase in the proportion of 2H2L was obtained at a higher NaBu concentration. NaBu also affected the charge heterogeneity of Mab, which may affect the efficacy of Mab. The basic charge variants of Mabs increased with an increase in the NaBu concentration. In addition, NaBu affected the galactosylation of Mab negatively. Overall, the data obtained here show that NaBu used in rCHO cell cultures for improved Mab production affects certain quality aspects of Mab, in this case, the charge heterogeneity and galactosylation.


Antibody Assembly Charge heterogeneity CHO cells Galactosylation Sodium butyrate 



This research was supported in part by the Converging Research Center Program through the NRF funded by the MEST (2009–0082276) and a grant from the Fundamental R&D Program for Technology of World Premier Materials funded by the Ministry of Knowledge Economy, Republic of Korea.


  1. Bergman LW, Harris E, Kuehl WM (1981) Glycosylation causes an apparent block in translation of immunoglobulin heavy chain. J Biol Chem 256(2):701–716PubMedGoogle Scholar
  2. Boswell CA, Tesar DB, Mukhyala K, Theil FP, Fielder PJ, Khawli LA (2010) Effects of charge on antibody tissue distribution and pharmacokinetics. Bioconjug Chem 21(12):2153–2163PubMedCrossRefGoogle Scholar
  3. Brekke OH, Sandlie I (2003) Therapeutic antibodies for human diseases at the dawn of the twenty-first century. Nat Rev Drug Discov 2:52–62PubMedCrossRefGoogle Scholar
  4. Chang MC, Tsai YL, Chen YW, Chan CP, Huang CF, Lan WC, Lin CC, Lan WH, Jeng JH (2013) Butyrate induces reactive oxygen species production and affects cell cycle progression in human gingival fibroblasts. J Periodontal Res 48(1):66–73PubMedCrossRefGoogle Scholar
  5. Chotigeat W, Watanapokasin Y, Mahler S, Gray PP (1994) Role of environmental conditions on the expression levels, glycoform pattern and levels of sialyltransferase for hFSH produced by recombinant CHO cells. Cytotechnology 15(1–3):217–221PubMedCrossRefGoogle Scholar
  6. Chumsae C, Gaza-Bulseco G, Sun J, Liu H (2007) Comparison of methionine oxidation in thermal stability and chemically stressed samples of a fully human monoclonal antibody. J Chromatogr B Analyt Technol Biomed Life Sci 850(1–2):285–294PubMedCrossRefGoogle Scholar
  7. Harris RJ, Kabakoff B, Macchi FD, Shen FJ, Kwong M, Andya JD, Shire SJ, Bjork N, Totpal K, Chen AB (2001) Identification of multiple sources of charge heterogeneity in a recombinant antibody. J Chromatogr B 752(2):233–245CrossRefGoogle Scholar
  8. Harris RJ, Shire SJ, Winter C (2004) Commercial manufacturing scale formulation and analytical characterization of therapeutic recombinant antibodies. Drug Dev Res 61(3):137–154CrossRefGoogle Scholar
  9. Hendrick V, Winnepenninckx P, Abdelkafi C, Vandeputte O, Cherlet M, Marique T, Renemann G, Loa A, Kretzmer G, Werenne J (2001) Increased productivity of recombinant tissular plasminogen activator (t-PA) by butyrate and shift of temperature: a cell cycle phases analysis. Cytotechnology 36(1–3):71–83PubMedCentralPubMedCrossRefGoogle Scholar
  10. Hong JK, Lee GM, Yoon SK (2011) Growth factor withdrawal in combination with sodium butyrate addition extends culture longevity and enhances antibody production in CHO cells. J Biotechnol 155(2):225–231PubMedCrossRefGoogle Scholar
  11. Hossler P, Khattak SF, Li ZJ (2009) Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology 19(9):936–949PubMedCrossRefGoogle Scholar
  12. Hwang SO, Lee GM (2008) Nutrient deprivation induces autophagy as well as apoptosis in Chinese hamster ovary cell culture. Biotechnol Bioeng 99(3):678–685PubMedCrossRefGoogle Scholar
  13. Jefferis R (2009) Glycosylation as a strategy to improve antibody-based therapeutics. Nat Rev Drug Discov 8:226–234PubMedCrossRefGoogle Scholar
  14. Jiang Z, Sharfstein ST (2008) Sodium butyrate stimulates monoclonal antibody over-expression in CHO cells by improving gene accessibility. Biotechnol Bioeng 100(1):189–194PubMedCrossRefGoogle Scholar
  15. Kaschak T, Boyd D, Lu F, Derfus G, Kluck B, Nogal B, Emery C, Summers C, Zheng K, Bayer R, Amanullah A, Yan BX (2011) Characterization of the basic charge variants of a human IgG1: effect of copper concentration in cell culture media. Mabs-Austin 3(6):577–583CrossRefGoogle Scholar
  16. Khawli LA, Goswami S, Hutchinson R, Kwong ZW, Yang JH, Wang XD, Yao ZL, Sreedhara A, Cano T, Tesar D, Nijem I, Allison DE, Wong PY, Kao YH, Quan C, Joshi A, Harris RJ, Motchnik P (2010) Charge variants in IgG1 Isolation, characterization, in vitro binding properties and pharmacokinetics in rats. Mabs-Austin 2(6):613–624CrossRefGoogle Scholar
  17. Kim NS, Lee GM (2002) Inhibition of sodium butyrate-induced apoptosis in recombinant Chinese hamster ovary cells by constitutively expressing antisense RNA of caspase-3. Biotechnol Bioeng 78(2):217–228PubMedCrossRefGoogle Scholar
  18. Kim SJ, Kim NS, Ryu CJ, Hong HJ, Lee GM (1998) Characterization of chimeric antibody producing CHO cells in the course of dihydrofolate reductase-mediated gene amplification and their stability in the absence of selective pressure. Biotechnol Bioeng 58(1):73–84PubMedCrossRefGoogle Scholar
  19. Lee JS, Lee GM (2012) Effect of sodium butyrate on autophagy and apoptosis in Chinese hamster ovary cells. Biotechnol Prog 28:349–357PubMedCrossRefGoogle Scholar
  20. Lee SM, Kim YG, Lee EG, Lee GM (2014) Digital mRNA profiling of N-glycosylation gene expression in recombinant Chinese hamster ovary cells treated with sodium butyrate. J Biotechnol 171:56–60PubMedCrossRefGoogle Scholar
  21. Leitzgen K, Knittler MR, Haas IG (1997) Assembly of immunoglobulin light chains as a prerequisite for secretion. A model for oligomerization-dependent subunit folding. J Biol Chem 272(5):3117–3123PubMedCrossRefGoogle Scholar
  22. Lin HY, Massowelch P, Di YP, Cai JW, Shen JW, Subjeck JR (1993) The 170-kDa glucose-regulated stress protein is an endoplasmic reticulum protein that binds immunoglobulin. Mol Biol Cell 4(11):1109–1119PubMedCentralPubMedCrossRefGoogle Scholar
  23. Liu H, Gaza-Bulseco G, Faldu D, Chumsae C, Sun J (2008) Heterogeneity of monoclonal antibodies. J Pharm Sci 97(7):2426–2447PubMedCrossRefGoogle Scholar
  24. Louis M, Rosato RR, Brault L, Osbild S, Battaglia E, Yang XH, Grant S, Bagrel D (2004) The histone deacetylase inhibitor sodium butyrate induces breast cancer cell apoptosis through diverse cytotoxic actions including glutathione depletion and oxidative stress. Int J Oncol 25(6):1701–1711PubMedGoogle Scholar
  25. Malhotra JD, Miao H, Zhang K, Wolfson A, Pennathur S, Pipe SW, Kaufman RJ (2008) Antioxidants reduce endoplasmic reticulum stress and improve protein secretion. Proc Natl Acad Sci U S A 105(47):18525–18530PubMedCentralPubMedCrossRefGoogle Scholar
  26. Melnick J, Dul JL, Argon Y (1994) Sequential interaction of the chaperones BiP and GRP94 with immunoglobulin chains in the endoplasmic reticulum. Nature 370(6488):373–375PubMedCrossRefGoogle Scholar
  27. Mimura Y, Lund J, Church S, Dong S, Li J, Goodall M, Jefferis R (2001) Butyrate increases production of human chimeric IgG in CHO-K1 cells whilst maintaining function and glycoform profile. J Immunol Methods 247(1–2):205–216PubMedCrossRefGoogle Scholar
  28. Pan H, Chen K, Chu L, Kinderman F, Apostol I, Huang G (2009) Methionine oxidation in human IgG2 Fc decreases binding affinities to protein A and FcRn. Protein Sci 18(2):424–433PubMedCentralPubMedCrossRefGoogle Scholar
  29. Reddy P, Sparvoli A, Fagioli C, Fassina G, Sitia R (1996) Formation of reversible disulfide bonds with the protein matrix of the endoplasmic reticulum correlates with the retention of unassembled Ig light chains. EMBO J 15(9):2077–2085PubMedCentralPubMedGoogle Scholar
  30. Rodriguez J, Spearman M, Huzel N, Butler M (2005) Enhanced production of monomeric interferon-beta by CHO cells through the control of culture conditions. Biotechnol Prog 21(1):22–30PubMedCrossRefGoogle Scholar
  31. Santell L, Ryll T, Etcheverry T, Santoris M, Dutina G, Wang A, Gunson J, Warner TG (1999) Aberrant metabolic sialylation of recombinant proteins expressed in Chinese hamster ovary cells in high productivity cultures. Biochem Biophys Res Commun 258(1):132–137PubMedCrossRefGoogle Scholar
  32. Schlatter S, Stansfield SH, Dinnis DM, Racher AJ, Birch JR, James DC (2005) On the optimal ratio of heavy to light chain genes for efficient recombinant antibody production by CHO cells. Biotechnol Prog 21(1):122–133PubMedCrossRefGoogle Scholar
  33. Shapiro AL, Scharff MD, Maizel JV, Uhr JW (1966) Synthesis of excess light chains of gamma globulin by rabbit lymph node cells. Nature 211(5046):243–245PubMedCrossRefGoogle Scholar
  34. Sung YH, Lee GM (2005) Enhanced human thrombopoietin production by sodium butyrate addition to serum-free suspension culture of bcl-2-overexpressing CHO cells. Biotechnol Prog 21(1):50–57PubMedCrossRefGoogle Scholar
  35. Sung YH, Song YJ, Lim SW, Chung JY, Lee GM (2004) Effect of sodium butyrate on the production, heterogeneity and biological activity of human thrombopoietin by recombinant Chinese hamster ovary cells. J Biotechnol 112(3):323–335PubMedCrossRefGoogle Scholar
  36. Vanhoutvin SA, Troost FJ, Hamer HM, Lindsey PJ, Koek GH, Jonkers DM, Kodde A, Venema K, Brummer RJ (2009) Butyrate-induced transcriptional changes in human colonic mucosa. PLoS One 4(8):e6759PubMedCentralPubMedCrossRefGoogle Scholar
  37. Vlasak J, Ionescu R (2008) Heterogeneity of monoclonal antibodies revealed by charge-sensitive methods. Curr Pharm Biotechnol 9(6):468–481PubMedCrossRefGoogle Scholar
  38. Yoon SK, Hong JK, Lee GM (2004) Effect of simultaneous application of stressful culture conditions on specific productivity and heterogeneity of erythropoietin in Chinese hamster ovary cells. Biotechnol Prog 20(4):1293–1296PubMedCrossRefGoogle Scholar
  39. Zhang T, Bourret J, Cano T (2011) Isolation and characterization of therapeutic antibody charge variants using cation exchange displacement chromatography. J Chromatogr A 1218(31):5079–5086PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jong Kwang Hong
    • 1
  • Sang Min Lee
    • 1
  • Kyung-Yong Kim
    • 2
  • Gyun Min Lee
    • 1
  1. 1.Department of Biological SciencesKAISTDaejeonSouth Korea
  2. 2.ISU ABXISGlobal R&D CenterSeongnamSouth Korea

Personalised recommendations