Applied Microbiology and Biotechnology

, Volume 98, Issue 9, pp 4277–4290 | Cite as

Isopropanol production with engineered Cupriavidus necator as bioproduction platform

  • Estelle Grousseau
  • Jingnan Lu
  • Nathalie Gorret
  • Stéphane E. Guillouet
  • Anthony J. Sinskey
Bioenergy and biofuels

Abstract

Alleviating our society’s dependence on petroleum-based chemicals has been highly emphasized due to fossil fuel shortages and increasing greenhouse gas emissions. Isopropanol is a molecule of high potential to replace some petroleum-based chemicals, which can be produced through biological platforms from renewable waste carbon streams such as carbohydrates, fatty acids, or CO2. In this study, for the first time, the heterologous expression of engineered isopropanol pathways were evaluated in a Cupriavidus necator strain Re2133, which was incapable of producing poly-3-hydroxybutyrate [P(3HB)]. These synthetic production pathways were rationally designed through codon optimization, gene placement, and gene dosage in order to efficiently divert carbon flow from P(3HB) precursors toward isopropanol. Among the constructed pathways, Re2133/pEG7c overexpressing native C. necator genes encoding a β-ketothiolase, a CoA-transferase, and codon-optimized Clostridium genes encoding an acetoacetate decarboxylase and an alcohol dehydrogenase produced up to 3.44 g l-1 isopropanol in batch culture, from fructose as a sole carbon source, with only 0.82 g l-1 of biomass. The intrinsic performance of this strain (maximum specific production rate 0.093 g g-1 h-1, yield 0.32 Cmole Cmole-1) corresponded to more than 60 % of the respective theoretical performance. Moreover, the overall isopropanol production yield (0.24 Cmole Cmole-1) and the overall specific productivity (0.044 g g-1 h-1) were higher than the values reported in the literature to date for heterologously engineered isopropanol production strains in batch culture. Strain Re2133/pEG7c presents good potential for scale-up production of isopropanol from various substrates in high cell density cultures.

Keywords

Cupriavidus necator Ralstonia eutropha Isopropanol Branched-chain alcohols Biofuel Metabolic engineering 

Supplementary material

253_2014_5591_MOESM1_ESM.pdf (482 kb)
ESM 1(PDF 481 kb)

References

  1. Aneja KK, Ashby RD, Solaiman DK (2009) Altered composition of Ralstonia eutropha poly(hydroxyalkanoate) through expression of PHA synthase from Allochromatium vinosum ATCC 35206. Biotechnol Lett 31(10):1601–1612PubMedCrossRefGoogle Scholar
  2. Aragao GMF (1996) Production de poly-beta-hydroxyalcanoates par Alcaligenes eutrophus: caractérisation cinétique et contribution à l’optimisation de la mise en oeuvre des cultures. Institut National des Sciences Appliquées de Toulouse, Thèse no d’ordre:403Google Scholar
  3. Araki S, Fukuhara H, Isaka T, Matsunaga F, Yasuhara M (1993) Preparation of propylene by dehydration of isopropanol in the presence of a pseudo-boehmite derived gamma alumina catalyst. US5227563AGoogle Scholar
  4. Behura SK, Severson DW (2012) Codon usage bias: causative factors, quantification methods and genome-wide patterns: with emphasis on insect genomes. Biol Rev Camb Philos 88(1):49–61CrossRefGoogle Scholar
  5. Bruno TJ, Wolk A, Naydich A (2009) Composition–explicit distillation curves for mixtures of gasoline with four-carbon alcohols (butanols). Energy Fuel 23:2295–2306CrossRefGoogle Scholar
  6. Budde CF, Mahan AE, Lu JN, Rha C, Sinskey AJ (2010) Roles of multiple acetoacetyl coenzyme A reductases in polyhydroxybutyrate biosynthesis in Ralstonia eutropha H16. J Bacteriol 192(20):5319–5328PubMedCentralPubMedCrossRefGoogle Scholar
  7. Budde CF, Riedel SL, Willis LB, Rha C, Sinskey AJ (2011) Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from plant oil by engineered Ralstonia eutropha strains. Appl Environ Microbiol 77(9):2847–2854PubMedCentralPubMedCrossRefGoogle Scholar
  8. Cary JW, Petersen DJ, Papoutsakis ET, Bennett GN (1990) Cloning and expression of Clostridium acetobutylicum ATCC-824 acetoacetyl-coenzyme A:acetate/butyrate:coenzyme A transferase in Escherichia coli. Appl Environ Microbiol 56(6):1576–1583PubMedCentralPubMedGoogle Scholar
  9. Chen JS, Hiu SF (1986) Acetone-butanol-isopropanol production by Clostridium beijerinckii (Synonym, Clostridium butylicum). Biotechnol Lett 8(5):371–376CrossRefGoogle Scholar
  10. Collas F, Kuit W, Clement B, Marchal R, Lopez-Contreras A, Monot F (2012) Simultaneous production of isopropanol, butanol, ethanol and 2,3-butanediol by Clostridium acetobutylicum ATCC 824 engineered strains. AMB Expr 2(1):45CrossRefGoogle Scholar
  11. Connor MR, Liao JC (2009) Microbial production of advanced transportation fuels in non-natural hosts. Curr Opin Biotechnol 20(3):307–315PubMedCrossRefGoogle Scholar
  12. Doi Y, Kawaguchi Y, Nakamura Y, Kunioka M (1989) Nuclear magnetic-resonance studies of poly(3-hydroxybutyrate) and polyphosphate metabolism in Alcaligenes eutrophus. Appl Environ Microbiol 55(11):2932–2938PubMedCentralPubMedGoogle Scholar
  13. Dürre P (1998) New insights and novel developments in clostridial acetone/butanol/isopropanol fermentation. Appl Microbiol Biotechnol 49(6):639–648CrossRefGoogle Scholar
  14. Dusséaux S, Croux C, Soucaille P, Meynial-Salles I (2013) Metabolic engineering of Clostridium acetobutylicum ATCC 824 for the high-yield production of a biofuel composed of an isopropanol/butanol/ethanol mixture. Metab Eng 18:1–8PubMedCrossRefGoogle Scholar
  15. Friedrich CG, Bowien B, Friedrich B (1979) Formate and oxalate metabolism in Alcaligenes eutrophus. J Gen Microbiol 115(Nov):185–192CrossRefGoogle Scholar
  16. Fukui T, Suzuki M, Tsuge T, Nakamura S (2009) Microbial synthesis of poly((R)-3-hydroxybutyrate-co-3-hydroxypropionate) from unrelated carbon sources by engineered Cupriavidus necator. Biomacromolecules 10(4):700–706PubMedCrossRefGoogle Scholar
  17. Fukui T, Ohsawa K, Mifune J, Orita I, Nakamura S (2010) Evaluation of promoters for gene expression in polyhydroxyalkanoate-producing Cupriavidus necator H16. Appl Microbiol Biotechnol 89(5):1527–1536CrossRefGoogle Scholar
  18. Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345PubMedCrossRefGoogle Scholar
  19. Grousseau E, Blanchet E, Deleris S, Albuquerque MGE, Paul E, Uribelarrea J-L (2013) Impact of sustaining a controlled residual growth on polyhydroxybutyrate yield and production kinetics in Cupriavidus necator. Bioresour Technol 148:30–38PubMedCrossRefGoogle Scholar
  20. Hanai T, Atsumi S, Liao JC (2007) Engineered synthetic pathway for isopropanol production in Escherichia coli. Appl Environ Microbiol 73(24):7814–7818PubMedCentralPubMedCrossRefGoogle Scholar
  21. Inokuma K, Liao JC, Okamoto M, Hanai T (2010) Improvement of isopropanol production by metabolically engineered Escherichia coli using gas stripping. J Biosci Bioeng 110(6):696–701PubMedCrossRefGoogle Scholar
  22. Ismaiel AA, Zhu CX, Colby GD, Chen JS (1993) Purification and characterization of a primary-secondary alcohol dehydrogenase from two strains of Clostridium beijerinckii. J Bacteriol 175(16):5097–5105PubMedCentralPubMedGoogle Scholar
  23. Jang YS, Malaviya A, Lee J, Im JA, Lee SY, Lee J, Eom MH, Cho JH, Seung DY (2013) Metabolic engineering of Clostridium acetobutylicum for the enhanced production of isopropanol-butanol-ethanol fuel mixture. Biotechnol Prog 29(4):1083–1088PubMedCrossRefGoogle Scholar
  24. Jendrossek D, Steinbüchel A, Schlegel HG (1988) Alcohol dehydrogenase gene from Alcaligenes eutrophus: subcloning, heterologous expression in Escherichia coli, sequencing, and location of Tn5 insertions. J Bacteriol 170(11):5248–5256PubMedCentralPubMedGoogle Scholar
  25. Johnson BF, Stanier RY (1971) Dissimilation of aromatic compounds by Alcaligenes eutrophus. J Bacteriol 107(2):468PubMedCentralPubMedGoogle Scholar
  26. Jojima T, Inui M, Yukawa H (2008) Production of isopropanol by metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 77(6):1219–1224PubMedCrossRefGoogle Scholar
  27. Kibby CL, Hall WK (1973) Studies of acid catalyzed reactions: XII. Alcohol decomposition over hydroxyapatite catalysts. J Catal 29(1):144–159CrossRefGoogle Scholar
  28. Koller M, Atlié A, Dias M, Reiterer A, Braunegg G (2010) Microbial PHA production from waste raw materials. In: Chen GQ Plastics from bacteria: natural functions and applications. Microbiol Monogr 14:85–119Google Scholar
  29. Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM 2nd, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166(1):175–176PubMedCrossRefGoogle Scholar
  30. Krouwel PG, Vanderlaan WFM, Kossen NWF (1980) Continuous production of normal-butanol and isopropanol by immobilized, growing Clostridium butylicum cells. Biotechnol Lett 2(5):253–258CrossRefGoogle Scholar
  31. Kusakabe T, Tatsuke T, Tsuruno K, Hirokawa Y, Atsumi S, Liao JC, Hanai T (2013) Engineering a synthetic pathway in cyanobacteria for isopropanol production directly from carbon dioxide and light. Metab Eng 20:101–108PubMedCrossRefGoogle Scholar
  32. Kusian B, Sultemeyer D, Bowien B (2002) Carbonic anhydrase is essential for growth of Ralstonia eutropha at ambient CO2 concentrations. J Bacteriol 184(18):5018–5026PubMedCentralPubMedCrossRefGoogle Scholar
  33. Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS (2008a) Fermentative butanol production by clostridia. Biotechnol Bioeng 101(2):209–228PubMedCrossRefGoogle Scholar
  34. Lee WH, Loo CY, Nomura CT, Sudesh K (2008b) Biosynthesis of polyhydroxyalkanoate copolymers from mixtures of plant oils and 3-hydroxyvalerate precursors. Bioresour Technol 99(15):6844–6851PubMedCrossRefGoogle Scholar
  35. Lim HN, Lee Y, Hussein R (2011) Fundamental relationship between operon organization and gene expression. Proc Natl Acad Sci U S A 108(26):10626–10631PubMedCentralPubMedCrossRefGoogle Scholar
  36. Lu J, Brigham C, Gai C, Sinskey A (2012a) Studies on the production of branched-chain alcohols in engineered Ralstonia eutropha. Appl Microbiol Biotechnol 96(1):283–297PubMedCrossRefGoogle Scholar
  37. Lu J, Brigham CJ, Rha C, Sinskey AJ (2012b) Characterization of an extracellular lipase and its chaperone from Ralstonia eutropha H16. Appl Microbiol Biotechnol 97(6):2443–2454PubMedCrossRefGoogle Scholar
  38. Matsumura M, Takehara S, Kataoka H (1992) Continuous butanol isopropanol fermentation in down-flow column reactor coupled with pervaporation using supported liquid membrane. Biotechnol Bioeng 39(2):148–156PubMedCrossRefGoogle Scholar
  39. Nakamura Y, Gojobori T, Ikemura T (2000) Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Res 28(1):292PubMedCentralPubMedCrossRefGoogle Scholar
  40. Ninfa AJ, Selinsky S, Perry N, Atkins S, Song QX, Mayo A, Arps D, Woolf P, Atkinson MR (2007) Using two-component systems and other bacterial regulatory factors for the fabrication of synthetic genetic devices. In: Simon MI, Crane BR, Crane A Two-component signaling systems, Pt A. Elsevier Academic, San Diego, 422:488–512Google Scholar
  41. Park JS, Park HC, Huh TL, Lee YH (1995) Production of poly-beta-hydroxybutyrate by Alcaligenes eutrophus transformants harboring cloned phbcab genes. Biotechnol Lett 17(7):735–740CrossRefGoogle Scholar
  42. Park JM, Jang YS, Kim TY, Lee SY (2010) Development of a gene knockout system for Ralstonia eutropha H16 based on the broad-host-range vector expressing a mobile group II intron. FEMS Microbiol Lett 309(2):193–200PubMedGoogle Scholar
  43. Peoples OP, Sinskey AJ (1989) Poly-beta-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophus H16 — identification and characterization of the PHB polymerase gene (Phbc). J Biol Chem 264(26):15298–15303PubMedGoogle Scholar
  44. Peralta-Yahya PP, Keasling JD (2010) Advanced biofuel production in microbes. Biotechnol J 5(2):147PubMedCrossRefGoogle Scholar
  45. Pharkya P, Burgard AP, Robin E, Burk MJ, Sun J (2011) Microorganisms and Methods for the co-production of isopropanol with primary alcohols, diols, and acids. US 2011/0201068 A1Google Scholar
  46. Pohlmann A, Fricke WF, Reinecke F, Kusian B, Liesegang H, Cramm R, Eitinger T, Ewering C, Pötter M, Schwartz E, Strittmatter A, Voss I, Gottschalk G, Steinbüchel A, Friedrich B, Bowien B (2006) Genome sequence of the bioplastic-producing Knallgas bacterium Ralstonia eutropha H16. Nat Biotechnol 24(10):1257–1262PubMedCrossRefGoogle Scholar
  47. Pötter M, Madkour MH, Mayer F, Steinbüchel A (2002) Regulation of phasin expression and polyhydroxyalkanoate (PHA) granule formation in Ralstonia eutropha H16. Microbiology 148(Pt 8):2413–2426PubMedGoogle Scholar
  48. Reinecke F, Steinbüchel A (2009) Ralstonia eutropha strain H16 as model organism for PHA metabolism and for biotechnological production of technically interesting biopolymers. J Mol Microbiol Biotechnol 16(1–2):91–108PubMedCrossRefGoogle Scholar
  49. Repaske R, Mayer R (1976) Dense autotrophic cultures of Alcaligenes eutrophus. Appl Environ Microbiol 32(4):592–597PubMedCentralPubMedGoogle Scholar
  50. Schendel FJ, Baude EJ, Flickinger MC (1989) Determination of protein expression and plasmid copy number from cloned genes in Escherichia coli by flow injection analysis using an enzyme indicator vector. Biotechnol Bioeng 34(8):1023–1036PubMedCrossRefGoogle Scholar
  51. Schlegel HG (1990) Alcaligenes eutrophus and its scientific and industrial career. NATO Adv Sci I E-App 186:133–141Google Scholar
  52. Schwartz E, Henne A, Cramm R, Eitinger T, Friedrich BR, Gottschalk G (2003) Complete nucleotide sequence of pHG1: a Ralstonia eutropha H16 megaplasmid encoding key enzymes of H2-based lithoautotrophy and anaerobiosis. J Mol Biol 332(2):369PubMedCrossRefGoogle Scholar
  53. Shen CR, Lan EI, Dekishima Y, Baez A, Cho KM, Liao JC (2011) Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microbiol 77(9):2905–2915PubMedCentralPubMedCrossRefGoogle Scholar
  54. Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Nat Biotechnol 1(9):784CrossRefGoogle Scholar
  55. Slater S, Houmiel KL, Tran M, Mitsky TA, Taylor NB, Padgette SR, Gruys KJ (1998) Multiple beta-ketothiolases mediate poly(beta-hydroxyalkanoate) copolymer synthesis in Ralstonia eutropha. J Bacteriol 180(8):1979–1987PubMedCentralPubMedGoogle Scholar
  56. Steinbüchel A, Schlegel HG (1984) A multifunctional fermentative alcohol-dehydrogenase from the strict aerobe Alcaligenes eutrophus — purification and properties. Eur J Biochem 141(3):555–564PubMedCrossRefGoogle Scholar
  57. Steinbüchel A, Fründ C, Jendrossek D, Schlegel HG (1987) Isolation of mutants of Alcaligenes eutrophus unable to derepress the fermentative alcohol-dehydrogenase. Arch Microbiol 148(3):178–186CrossRefGoogle Scholar
  58. Survase SA, Jurgens G, van Heiningen A, Granstrom T (2011) Continuous production of isopropanol and butanol using Clostridium beijerinckii DSM 6423. Appl Microbiol Biotechnol 91(5):1305–1313PubMedCrossRefGoogle Scholar
  59. Tamakawa H, Mita T, Yokoyama A, Ikushima S, Yoshida S (2013) Metabolic engineering of Candida utilis for isopropanol production. Appl Microbiol Biotechnol 97(14):6231–6239PubMedCrossRefGoogle Scholar
  60. Tanaka K, Ishizaki A, Kanamaru T, Kawano T (1995) Production of poly(d-3-hydroxybutyrate) from CO2, H2, and O2 by high cell-density autotrophic cultivation of Alcaligenes eutrophus. Biotechnol Bioeng 45(3):268–275PubMedCrossRefGoogle Scholar
  61. Vollbrecht D, Elnawawy MA, Schlegel HG (1978) Excretion of metabolites by hydrogen bacteria: 1. Autotrophic and heterotrophic fermentations. Eur J Appl Microbiol Biotechnol 6(2):145–155CrossRefGoogle Scholar
  62. Wahl A, Schuth N, Pfeiffer D, Nussberger S, Jendrossek D (2012) PHB granules are attached to the nucleoid via PhaM in Ralstonia eutropha. BMC Microbiol 12(1):262PubMedCentralPubMedCrossRefGoogle Scholar
  63. Wilde E (1962) Untersuchungen über wachstum und speicherstoffsynthese von Hydrogenomonas. Arch Microbiol 43(2):109Google Scholar
  64. York GM, Stubbe J, Sinskey AJ (2002) The Ralstonia eutropha PhaR protein couples synthesis of the PhaP phasin to the presence of polyhydroxybutyrate in cells and promotes polyhydroxybutyrate production. J Bacteriol 184(1):59–66PubMedCentralPubMedCrossRefGoogle Scholar
  65. Yu K, Hu S, Huang J, Mei L-H (2011) A high-throughput colorimetric assay to measure the activity of glutamate decarboxylase. Enzym Microb Technol 49(3):272–276CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Estelle Grousseau
    • 1
    • 2
    • 3
  • Jingnan Lu
    • 4
  • Nathalie Gorret
    • 1
    • 2
    • 3
  • Stéphane E. Guillouet
    • 1
    • 2
    • 3
  • Anthony J. Sinskey
    • 5
    • 6
    • 7
  1. 1.Université de ToulouseINSA, UPS, INP; LISBPToulouseFrance
  2. 2.INRA, UMR792 Ingénierie des Systèmes Biologiques et des ProcédésToulouseFrance
  3. 3.CNRSUMR5504ToulouseFrance
  4. 4.Department of ChemistryMassachusetts Institute of TechnologyCambridgeUSA
  5. 5.Department of BiologyMassachusetts Institute of TechnologyCambridgeUSA
  6. 6.Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeUSA
  7. 7.Engineering Systems DivisionMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations