Advertisement

Applied Microbiology and Biotechnology

, Volume 98, Issue 7, pp 3091–3097 | Cite as

Acanthamoeba release compounds which promote growth of Listeria monocytogenes and other bacteria

  • Lars Fieseler
  • Dominik Doyscher
  • Martin J. Loessner
  • Markus SchupplerEmail author
Applied microbial and cell physiology

Abstract

Listeria monocytogenes can grow as a saphrophyte in diverse habitats, e.g., soil, rivers, lakes, and on decaying plant material. In these environments, the bacteria are frequently exposed to predatory protozoa such as Acanthamoeba. Although L. monocytogenes is a facultative intracellular pathogen it does not infect or survive intracellular in Acanthamoeba castellanii, unlike several other facultative intracellular bacteria. Instead, motile L. monocytogenes can form large aggregates on amoebal cells and are effectively phagocytosed and eventually digested by Acanthamoeba. Here, we demonstrate that non-motile L. monocytogenes represent a less preferred prey in co-cultures with A. castellanii. Moreover, we found that the presence of Acanthamoeba strongly promotes growth of the bacteria in non-nutrient saline, by releasing nutrients or other growth promoters. Thus, the lack of motility and ability to utilize amoebal metabolites may aid to avoid eradication by amoebal predation in low-nutrient environments.

Keywords

Listeria monocytogenes Acanthamoeba castellanii Co-culture Growth promotion Secreted metabolites 

Notes

Acknowledgments

The authors would like to give special thanks to Matthias Horn for providing the Acanthamoeba castellanii strain. This work was funded by the Competence Center Environment and Sustainability of the ETH Domain (CCES), project name “BactFlow”.

References

  1. Abd H, Wretlind B, Saeed A, Idsund E, Hultenby K, Sandstrom G (2008) Pseudomonas aeruginosa utilises its type III secretion system to kill the free-living amoeba Acanthamoeba castellanii. J Eukaryot Microbiol 55:235–243. doi: 10.1111/j.1550-7408.2008.00311.x PubMedCrossRefGoogle Scholar
  2. Akya A, Pointon A, Thomas C (2009a) Mechanism involved in phagocytosis and killing of Listeria monocytogenes by Acanthamoeba polyphaga. Parasitol Res 105:1375–1383. doi: 10.1007/s00436-009-1565-z PubMedCrossRefGoogle Scholar
  3. Akya A, Pointon A, Thomas C (2009b) Viability of Listeria monocytogenes in co-culture with Acanthamoeba spp. FEMS Microbiol Ecol 70:20–29. doi: 10.1111/j.1574-6941.2009.00736.x PubMedCrossRefGoogle Scholar
  4. Akya A, Pointon A, Thomas C (2010) Listeria monocytogenes does not survive ingestion by Acanthamoeba polyphaga. Microbiology 156:809–818. doi: 10.1099/Mic.0.031146-0 PubMedCrossRefGoogle Scholar
  5. Anacarso I, de Niederhausern S, Messi P, Guerrieri E, Iseppi R, Sabia C, Bondi M (2012) Acanthamoeba polyphaga, a potential environmental vector for the transmission of food-borne and opportunistic pathogens. J Basic Microbiol 52:261–268. doi: 10.1002/jobm.201100097 PubMedCrossRefGoogle Scholar
  6. Bertsch D, Rau J, Eugster MR, Haug MC, Lawson PA, Lacroix C, Meile L (2013) Listeria fleischmannii sp. nov., isolated from cheese. Int J Syst Evol Microbiol 63:526–532. doi: 10.1099/ijs.0.036947-0 ijs PubMedCrossRefGoogle Scholar
  7. Bleasdale B, Lott PJ, Jagannathan A, Stevens MP, Birtles RJ, Wigley P (2009) The Salmonella pathogenicity island 2-encoded type III secretion system Is essential for the survival of Salmonella enterica serovar Typhimurium in free-living amoebae. Appl Environ Microbiol 75:1793–1795. doi: 10.1128/Aem.02033-08 Google Scholar
  8. Brandl MT, Rosenthal BM, Haxo AF, Berk SG (2005) Enhanced survival of Salmonella enterica in vesicles released by a soilborne Tetrahymena species. Appl Environ Microbiol 71:1562–1569. doi: 10.1128/Aem.71.3.1562-1569.2005 PubMedCentralPubMedCrossRefGoogle Scholar
  9. Brown MRW, Barker J (1999) Unexplored reservoirs of pathogenic bacteria: protozoa and biofilms. Trends Microbiol 7:46–50. doi: 10.1016/S0966-842x(98)01425-5 PubMedCrossRefGoogle Scholar
  10. Cossart P (2011) Illuminating the landscape of host–pathogen interactions with the bacterium Listeria monocytogenes. Proc Natl Acad Sci U S A 108:19484–19491. doi: 10.1073/pnas.1112371108 PubMedCentralPubMedCrossRefGoogle Scholar
  11. Douesnard-Malo F, Daigle F (2011) Increased persistence of Salmonella enterica serovar Typhi in the presence of Acanthamoeba castellanii. Appl Environ Microbiol 77:7640–7646. doi: 10.1128/Aem.00699-11 PubMedCentralPubMedCrossRefGoogle Scholar
  12. Doyscher D, Fieseler L, Dons L, Loessner MJ, Schuppler M (2013) Acanthamoeba feature a unique backpacking strategy to trap and feed on Listeria monocytogenes and other motile bacteria. Environ Microbiol 15:433–446. doi: 10.1111/j.1462-2920.2012.02858.x PubMedCrossRefGoogle Scholar
  13. Essig A, Heinemann M, Simnacher U, Marre R (1997) Infection of Acanthamoeba castellanii by Chlamydia pneumoniae. Appl Environ Microbiol 63:1396–1399PubMedCentralPubMedGoogle Scholar
  14. Freitag NE, Port GC, Miner MD (2009) Listeria monocytogenes—from saprophyte to intracellular pathogen. Nat Rev Microbiol 7:623–628. doi: 10.1038/nrmicro2171 PubMedCentralPubMedCrossRefGoogle Scholar
  15. Glaser P, Frangeul L, Buchrieser C, Rusniok C, Amend A, Baquero F, Berche P, Bloecker H, Brandt P, Chakraborty T, Charbit A, Chetouani F, Couve E, de Daruvar A, Dehoux P, Domann E, Dominguez-Bernal G, Duchaud E, Durant L, Dussurget O, Entian KD, Fsihi H, Garcia-del Portillo F, Garrido P, Gautier L, Goebel W, Gomez-Lopez N, Hain T, Hauf J, Jackson D, Jones LM, Kaerst U, Kreft J, Kuhn M, Kunst F, Kurapkat G, Madueno E, Maitournam A, Vicente JM, Ng E, Nedjari H, Nordsiek G, Novella S, de Pablos B, Perez-Diaz JC, Purcell R, Remmel B, Rose M, Schlueter T, Simoes N, Tierrez A, Vazquez-Boland JA, Voss H, Wehland J, Cossart P (2001) Comparative genomics of Listeria species. Science 294:849–852. doi: 10.1126/science.1063447 294/5543/849 PubMedGoogle Scholar
  16. Gourabathini P, Brandl MT, Redding KS, Gunderson JH, Berk SG (2008) Interactions between food-borne pathogens and protozoa isolated from lettuce and spinach. Appl Environ Microbiol 74:2518–2525. doi: 10.1128/Aem.02709-07 PubMedCentralPubMedCrossRefGoogle Scholar
  17. Hahn MW, Hofle MG (1998) Grazing pressure by a bacterivorous flagellate reverses the relative abundance of Comamonas acidovorans PX54 and Vibrio strain CB5 in chemostat cocultures. Appl Environ Microbiol 64:1910–1918PubMedCentralPubMedGoogle Scholar
  18. Hahn MW, Hofle MG (2001) Grazing of protozoa and its effect on populations of aquatic bacteria. FEMS Microbiol Ecol 35:113–121. doi: 10.1111/j.1574-6941.2001.tb00794.x PubMedCrossRefGoogle Scholar
  19. Hilbi H, Hoffmann C, Harrison CF (2011) Legionella spp. outdoors: colonization, communication and persistence. Environ Microbiol Rep 3:286–296. doi: 10.1111/j.1758-2229.2011.00247.x PubMedCrossRefGoogle Scholar
  20. Huws SA, Morley RJ, Jones MV, Brown MRW, Smith AW (2008) Interactions of some common pathogenic bacteria with Acanthamoeba polyphaga. FEMS Microbiol Lett 282:258–265. doi: 10.1111/j.1574-6968.2008.01123.x PubMedCrossRefGoogle Scholar
  21. Kathariou S, Pine L (1991) The type strain(s) of Listeria monocytogenes—a source of continuing difficulties. Int J Syst Evol Microbiol 41:328–330Google Scholar
  22. Lang Halter E, Neuhaus K, Scherer S (2013) Listeria weihenstephanensis sp. nov., isolated from the water plant Lemna trisulca taken from a freshwater pond. Int J Syst Evol Microbiol 63:641–647. doi: 10.1099/ijs.0.036830-0 PubMedCrossRefGoogle Scholar
  23. Lau HY, Ashbolt NJ (2009) The role of biofilms and protozoa in Legionella pathogenesis: implications for drinking water. J Appl Microbiol 107:368–378. doi: 10.1111/j.1365-2672.2009.04208.x PubMedCrossRefGoogle Scholar
  24. Lee XY, Reimmann C, Greub G, Sufrin J, Croxatto A (2012) The Pseudomonas aeruginosa toxin L-2-amino-4-methoxy-trans-3-butenoic acid inhibits growth and induces encystment in Acanthamoeba castellanii. Microbes Infect 14:268–272. doi: 10.1016/j.micinf.2011.10.004 PubMedCrossRefGoogle Scholar
  25. Leisner JJ, Larsen MH, Jorgensen RL, Brondsted L, Thomsen LE, Ingmer H (2008) Chitin hydrolysis by Listeria spp., including L. monocytogenes. Appl Environ Microbiol 74:3823–3830. doi: 10.1128/AEM.02701-07 PubMedCentralPubMedCrossRefGoogle Scholar
  26. Matz C, Jürgens K (2005) High motility reduces grazing mortality of planktonic bacteria. Appl Environ Microbiol 71:921–929. doi: 10.1128/Aem.71.2.921-929.2005 PubMedCentralPubMedCrossRefGoogle Scholar
  27. Matz C, Kjelleberg S (2005) Off the hook—how bacteria survive protozoan grazing. Trends Microbiol 13:302–307. doi: 10.1016/j.tim.2005.05.009 PubMedCrossRefGoogle Scholar
  28. Matz C, Deines P, Boenigk J, Arndt H, Eberl L, Kjelleberg S, Jürgens K (2004) Impact of violacein-producing bacteria on survival and feeding of bacterivorous nanoflagellates. Appl Environ Microbiol 70:1593–1599. doi: 10.1128/Aem.70.3.1593-1599.2004 PubMedCentralPubMedCrossRefGoogle Scholar
  29. Michel R, Burghardt H, Bergmann H (1995) Acanthamoebae isolated from a highly contaminated drinking-water system of a hospital exhibited natural infections with Pseudomonas aeruginosa. Zbl Hyg Umweltmed 196:532–544Google Scholar
  30. Pickup ZL, Pickup R, Parry JD (2007) Effects of bacterial prey species and their concentration on growth of the amoebae Acanthamoeba castellanii and Hartmannella vermiformis. Appl Environ Microbiol 73:2631–2634. doi: 10.1128/Aem.02061-06 PubMedCentralPubMedCrossRefGoogle Scholar
  31. Pushkareva VI, Ermolaeva SA (2010) Listeria monocytogenes virulence factor Listeriolysin O favors bacterial growth in co-culture with the ciliate Tetrahymena pyriformis, causes protozoan encystment and promotes bacterial survival inside cysts. BMC Microbiol 10:26. doi: 10.1186/1471-2180-10-26 PubMedCentralPubMedCrossRefGoogle Scholar
  32. Saeed A, Abd H, Edvinsson B, Sandstrom G (2009) Acanthamoeba castellanii an environmental host for Shigella dysenteriae and Shigella sonnei. Arch Microbiol 191:83–88. doi: 10.1007/s00203-008-0422-2 PubMedCrossRefGoogle Scholar
  33. Schmid B, Klumpp J, Raimann E, Loessner MJ, Stephan R, Tasara T (2009) Role of cold shock proteins in growth of Listeria monocytogenes under cold and osmotic stress conditions. Appl Environ Microbiol 75:1621–1627. doi: 10.1128/AEM.02154-08 PubMedCentralPubMedCrossRefGoogle Scholar
  34. Shen A, Higgins DE (2006) The MogR transcriptional repressor regulates nonhierarchal expression of flagellar motility genes and virulence in Listeria monocytogenes. PLoS Pathog 2:282–295. doi: 10.1371/journal.ppat.0020030 CrossRefGoogle Scholar
  35. Steinert M, Birkness K, White E, Fields B, Quinn F (1998) Mycobacterium avium bacilli grow saprozoically in coculture with Acanthamoeba polyphaga and survive within cyst walls. Appl Environ Microbiol 64:2256–2261PubMedCentralPubMedGoogle Scholar
  36. Thom S, Warhurst D, Drasar BS (1992) Association of Vibrio cholerae with fresh-water amoebas. J Med Microbiol 36:303–306PubMedCrossRefGoogle Scholar
  37. Valeru SP, Wai SN, Saeed A, Sandstrom G, Abd H (2012) ToxR of Vibrio cholerae affects biofilm, rugosity and survival with Acanthamoeba castellanii. BMC Res Notes 5:33. doi: 10.1186/1756-0500-5-33 PubMedCentralPubMedCrossRefGoogle Scholar
  38. Wildschutte H, Wolfe DM, Tamewitz A, Lawrence JG (2004) Protozoan predation, diversifying selection, and the evolution of antigenic diversity in Salmonella. Proc Natl Acad Sci U S A 101:10644–10649. doi: 10.1073/pnas.04040284101 PubMedCentralPubMedCrossRefGoogle Scholar
  39. Zhou XH, Elmose J, Call DR (2007) Interactions between the environmental pathogen Listeria monocytogenes and a free-living protozoan (Acanthamoeba castellanii). Environ Microbiol 9:913–922. doi: 10.1111/j.1462-2920.2006.01213.x PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Lars Fieseler
    • 1
    • 2
  • Dominik Doyscher
    • 1
    • 3
  • Martin J. Loessner
    • 1
  • Markus Schuppler
    • 1
    Email author
  1. 1.Institute of Food, Nutrition and HealthETH ZurichZurichSwitzerland
  2. 2.Institute for Food and Beverage InnovationZHAW Zurich8820 WädenswilSwitzerland
  3. 3.Department of Veterinary Sciences, Faculty of Veterinary MedicineLudwig-Maximilians-Universität MünchenOberschleissheimGermany

Personalised recommendations