Applied Microbiology and Biotechnology

, Volume 98, Issue 5, pp 1983–1990 | Cite as

Developing inexpensive malaria vaccines from plants and algae

  • James A. Gregory
  • Stephen P. Mayfield


Malaria is a parasitic, mosquito-borne, infectious disease that threatens nearly half of the global population. The last decade has seen a dramatic drop in the number of malaria-related deaths because of vector control methods and anti-malarial drugs. Unfortunately, this strategy is not sustainable because of the emergence of insecticide-resistant mosquitoes and drug-resistant Plasmodium parasites. Eradication of malaria will ultimately require low-cost easily administered vaccines that work in concert with current control methods. Low cost and ease of administration will be essential components of any vaccine, because malaria endemic regions are poor and often lack an adequate healthcare infrastructure. Recently, several groups have begun addressing these issues using inexpensive photosynthetic organisms for producing vaccine antigens and exploring oral delivery strategies. Immune responses from plant-based injectable malaria vaccines are promising, but attempts to adapt these for oral delivery suggest we are far from a feasible strategy. Here, we review examples of these technologies and discuss the progress and potential of this research, as well as the obstacles ahead.


Malaria Oral vaccine Algae Tobacco Mucosal adjuvant 



Support was provided by the San Diego Foundation, the California Energy Commission (500-10-039) and the National Science Foundation (CBET-1160184).


  1. Anders RF, Crewther PE, Edwards S, Margetts M, Matthew ML, Pollock B, Pye D (1998) Immunisation with recombinant AMA-1 protects mice against infection with Plasmodium chabaudi. Vaccine 16(2–3):240–247PubMedCrossRefGoogle Scholar
  2. Autenrieth SE, Autenrieth IB (2008) Yersinia enterocolitica: subversion of adaptive immunity and implications for vaccine development. Int J Med Microbiol 298(1-2):69–77. doi: 10.1016/j.ijmm.2007.07.010 Google Scholar
  3. Baer K, Klotz C, Kappe SH, Schnieder T, Frevert U (2007) Release of hepatic Plasmodium yoelii merozoites into the pulmonary microvasculature. PLoS Pathog 3(11):e171. doi: 10.1371/journal.ppat.0030171 PubMedCentralPubMedCrossRefGoogle Scholar
  4. Brennan FR, Jones TD, Longstaff M, Chapman S, Bellaby T, Smith H, Xu F, Hamilton WD, Flock JI (1999) Immunogenicity of peptides derived from a fibronectin-binding protein of S. aureus expressed on two different plant viruses. Vaccine 17(15–16):1846–1857PubMedCrossRefGoogle Scholar
  5. Cerutti A (2008) The regulation of IgA class switching. Nat Rev Immunol 8(6):421–434. doi: 10.1038/nri2322 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Clemente M, Corigliano MG (2012) Overview of plant-made vaccine antigens against malaria. J Biomed Biotechnol 2012:206918. doi: 10.1155/2012/206918 PubMedCentralPubMedCrossRefGoogle Scholar
  7. Center for Disease Control (2013) Pediatric/VFC Vaccine Price List.Google Scholar
  8. Daniell H, Singh ND, Mason H, Streatfield SJ (2009) Plant-made vaccine antigens and biopharmaceuticals. Trends Plant Sci 14(12):669–679. doi: 10.1016/j.tplants.2009.09.009 PubMedCentralPubMedCrossRefGoogle Scholar
  9. Dauvillee D, Delhaye S, Gruyer S, Slomianny C, Moretz SE, d’Hulst C, Long CA, Ball SG, S T (2010) Engineering the chloroplast targeted malarial vaccine antigens in Chlamydomonas starch granules. PLoS One 5(12):e15424. doi: 10.1371/journal.pone.0015424 PubMedCentralPubMedCrossRefGoogle Scholar
  10. Davies HM (2010) Review article: commercialization of whole-plant systems for biomanufacturing of protein products: evolution and prospects. Plant Biotechnol J 8(8):845–861. doi: 10.1111/j.1467-7652.2010.00550.x PubMedCrossRefGoogle Scholar
  11. Davoodi-Semiromi A, Schreiber M, Nalapalli S, Verma D, Singh ND, Banks RK, Chakrabarti D, Daniell H (2010) Chloroplast-derived vaccine antigens confer dual immunity against cholera and malaria by oral or injectable delivery. Plant Biotechnol J 8(2):223–242. doi: 10.1111/j.1467-7652.2009.00479.x PubMedCentralPubMedCrossRefGoogle Scholar
  12. Dreesen IA, Charpin-El Hamri G, Fussenegger M (2010) Heat-stable oral alga-based vaccine protects mice from Staphylococcus aureus infection. J Biotechnol 145(3):273–280. doi: 10.1016/j.jbiotec.2009.12.006 PubMedCrossRefGoogle Scholar
  13. Duffy PE, Sahu T, Akue A, Milman N, Anderson C (2012) Pre-erythrocytic malaria vaccines: identifying the targets. Expert Rev Vaccines 11(10):1261–1280. doi: 10.1586/erv.12.92 PubMedCentralPubMedCrossRefGoogle Scholar
  14. Eastman RT, Fidock DA (2009) Artemisinin-based combination therapies: a vital tool in efforts to eliminate malaria. Nat Rev Microbiol 7(12):864–874. doi: 10.1038/nrmicro2239 PubMedCentralPubMedGoogle Scholar
  15. Egan AF, Morris J, Barnish G, Allen S, Greenwood BM, Kaslow DC, Holder AA, Riley EM (1996) Clinical immunity to Plasmodium falciparum malaria is associated with serum antibodies to the 19-kDa C-terminal fragment of the merozoite surface antigen, PfMSP-1. J Infect Dis 173(3):765–769PubMedCrossRefGoogle Scholar
  16. Ensign LM, Cone R, Hanes J (2012) Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev 64(6):557–570. doi: 10.1016/j.addr.2011.12.009 PubMedCentralPubMedCrossRefGoogle Scholar
  17. Farrance CE, Chichester JA, Musiychuk K, Shamloul M, Rhee A, Manceva SD, Jones RM, Mamedov T, Sharma S, Mett V, Streatfield SJ, Roeffen W, van de Vegte-Bolmer M, Sauerwein RW, Wu Y, Muratova O, Miller L, Duffy P, Sinden R, Yusibov V (2011a) Antibodies to plant-produced Plasmodium falciparum sexual stage protein Pfs25 exhibit transmission blocking activity. Hum Vaccin 7(Suppl):191–198PubMedCrossRefGoogle Scholar
  18. Farrance CE, Rhee A, Jones RM, Musiychuk K, Shamloul M, Sharma S, Mett V, Chichester JA, Streatfield SJ, Roeffen W, van de Vegte-Bolmer M, Sauerwein RW, Tsuboi T, Muratova OV, Wu Y, Yusibov V (2011b) A plant-produced Pfs230 vaccine candidate blocks transmission of Plasmodium falciparum. Clin Vaccine Immunol 18(8):1351–1357. doi: 10.1128/CVI.05105-11 PubMedCentralPubMedCrossRefGoogle Scholar
  19. Geels MJ, Imoukhuede EB, Imbault N, van Schooten H, McWade T, Troye-Blomberg M, Dobbelaer R, Craig AG, Leroy O (2011) European Vaccine Initiative: lessons from developing malaria vaccines. Expert Rev Vaccines 10(12):1697–1708. doi: 10.1586/erv.11.158 PubMedCrossRefGoogle Scholar
  20. Georgianna DR, Mayfield SP (2012) Exploiting diversity and synthetic biology for the production of algal biofuels. Nature 488(7411):329–335. doi: 10.1038/nature11479 PubMedCrossRefGoogle Scholar
  21. Girard A, Saron W, Bergeron-Sandoval LP, Sarhan F, Archambault D (2011) Flagellin produced in plants is a potent adjuvant for oral immunization. Vaccine 29(38):6695–6703. doi: 10.1016/j.vaccine.2011.06.092 PubMedCrossRefGoogle Scholar
  22. Giritch A, Marillonnet S, Engler C, van Eldik G, Botterman J, Klimyuk V, Gleba Y (2006) Rapid high-yield expression of full-size IgG antibodies in plants coinfected with noncompeting viral vectors. Proc Natl Acad Sci U S A 103(40):14701–14706. doi: 10.1073/pnas.0606631103 PubMedCentralPubMedCrossRefGoogle Scholar
  23. Gregory JA, Li F, Tomosada LM, Cox CJ, Topol AB, Vinetz JM, Mayfield S (2012) Algae-produced Pfs25 elicits antibodies that inhibit malaria transmission. PLoS One 7(5):e37179. doi: 10.1371/journal.pone.0037179 PubMedCentralPubMedCrossRefGoogle Scholar
  24. Gregory JA, Topol AB, Doerner DZ, Mayfield S (2013) Alga-produced cholera toxin-Pfs25 fusion proteins as oral vaccines. Appl Environ Microbiol 79(13):3917–3925. doi: 10.1128/AEM.00714-13 PubMedCentralPubMedCrossRefGoogle Scholar
  25. Haq TA, Mason HS, Clements JD, Arntzen CJ (1995) Oral immunization with a recombinant bacterial antigen produced in transgenic plants. Science 268(5211):714–716PubMedCrossRefGoogle Scholar
  26. Hill AV, Reyes-Sandoval A, O'Hara G, Ewer K, Lawrie A, Goodman A, Nicosia A, Folgori A, Colloca S, Cortese R, Gilbert SC, Draper SJ (2010) Prime-boost vectored malaria vaccines: progress and prospects. Hum Vaccin 6(1):78–83PubMedCrossRefGoogle Scholar
  27. Holmgren J, Adamsson J, Anjuere F, Clemens J, Czerkinsky C, Eriksson K, Flach CF, George-Chandy A, Harandi AM, Lebens M, Lehner T, Lindblad M, Nygren E, Raghavan S, Sanchez J, Stanford M, Sun JB, Svennerholm AM, Tengvall S (2005) Mucosal adjuvants and anti-infection and anti-immunopathology vaccines based on cholera toxin, cholera toxin B subunit and CpG DNA. Immunol Lett 97(2):181–188. doi: 10.1016/j.imlet.2004.11.009 PubMedCrossRefGoogle Scholar
  28. Ingelsson B, Shapiguzov A, Kieselbach T, Vener AV (2009) Peptidyl-prolyl isomerase activity in chloroplast thylakoid lumen is a dispensable function of immunophilins in Arabidopsis thaliana. Plant Cell Physiol 50(10):1801–1814. doi: 10.1093/pcp/pcp122 PubMedCrossRefGoogle Scholar
  29. Ingstad B, Munthali AC, Braathen SH, Grut L (2012) The evil circle of poverty: a qualitative study of malaria and disability. Malar J 11:15. doi: 10.1186/1475-2875-11-15 PubMedCentralPubMedCrossRefGoogle Scholar
  30. Jones RM, Chichester JA, Mett V, Jaje J, Tottey S, Manceva S, Casta LJ, Gibbs SK, Musiychuk K, Shamloul M, Norikane J, Mett V, Streatfield SJ, van de Vegte-Bolmer M, Roeffen W, Sauerwein RW, Yusibov V (2013) A Plant-Produced Pfs25 VLP Malaria vaccine candidate induces persistent transmission blocking antibodies against Plasmodium falciparum in immunized mice. PLoS One 8(11):e79538. doi: 10.1371/journal.pone.0079538 PubMedCentralPubMedCrossRefGoogle Scholar
  31. Kaminski RW, Turbyfill KR, Oaks EV (2006) Mucosal adjuvant properties of the Shigella invasin complex. Infect Immun 74(5):2856–2866. doi: 10.1128/IAI.74.5.2856-2866.2006 Google Scholar
  32. Kaslow DC, Bathurst IC, Isaacs SN, Keister DB, Moss B, Barr PJ (1992) Induction of Plasmodium falciparum transmission-blocking antibodies by recombinant Pfs25. Mem Inst Oswaldo Cruz 87(Suppl 3):175–177PubMedCrossRefGoogle Scholar
  33. Kearney CM, Donson J, Jones GE, Dawson WO (1993) Low level of genetic drift in foreign sequences replicating in an RNA virus in plants. Virology 192(1):11–17. doi: 10.1006/viro.1993.1002 PubMedCrossRefGoogle Scholar
  34. Kim J, Mayfield SP (1997) Protein disulfide isomerase as a regulator of chloroplast translational activation. Science 278(5345):1954–1957PubMedCrossRefGoogle Scholar
  35. Kim SH, Seo KW, Kim J, Lee KY, Jang YS (2010) The M cell-targeting ligand promotes antigen delivery and induces antigen-specific immune responses in mucosal vaccination. J Immunol 185(10):5787–5795. doi: 10.4049/jimmunol.0903184 Google Scholar
  36. Kirkman LA, Deitsch KW (2012) Antigenic variation and the generation of diversity in malaria parasites. Curr Opin Microbiol 15(4):456–462. doi: 10.1016/j.mib.2012.03.003 PubMedCentralPubMedCrossRefGoogle Scholar
  37. Kumar CS, Deepesh G, Mahavir Y, Archana T (2012) Edible vaccine: a new platform for the development of malaria vaccine. Crit Rev Eukaryot Gene Expr 22(3):243–248PubMedCrossRefGoogle Scholar
  38. Kwon KC, Verma D, Singh ND, Herzog R, Daniell H (2013) Oral delivery of human biopharmaceuticals, autoantigens and vaccine antigens bioencapsulated in plant cells. Adv Drug Deliv Rev 65(6):782–799. doi: 10.1016/j.addr.2012.10.005 PubMedCrossRefGoogle Scholar
  39. Liu C, Willmund F, Golecki JR, Cacace S, Hess B, Markert C, Schroda M (2007) The chloroplast HSP70B-CDJ2-CGE1 chaperones catalyse assembly and disassembly of VIPP1 oligomers in Chlamydomonas. Plant J 50(2):265–277. doi: 10.1111/j.1365-313X.2007.03047.x PubMedCrossRefGoogle Scholar
  40. Malaria Eradication Research Agenda (2011a) A research agenda for malaria eradication: vaccines. PLoS medicine 8(1):e1000398. doi: 10.1371/journal.pmed.1000398 CrossRefGoogle Scholar
  41. Malaria Eradication Research Agenda (2011b) A research agenda for malaria eradication: vector control. PLoS medicine 8(1):e1000401. doi: 10.1371/journal.pmed.1000401 CrossRefGoogle Scholar
  42. Mamedov T, Ghosh A, Jones RM, Mett V, Farrance CE, Musiychuk K, Horsey A, Yusibov V (2012) Production of non-glycosylated recombinant proteins in Nicotiana benthamiana plants by co-expressing bacterial PNGase F. Plant Biotechnol J 10(7):773–782. doi: 10.1111/j.1467-7652.2012.00694.x PubMedCrossRefGoogle Scholar
  43. Mason HS, Lam DM, Arntzen CJ (1992) Expression of hepatitis B surface antigen in transgenic plants. Proc Natl Acad Sci U S A 89(24):11745–11749PubMedCentralPubMedCrossRefGoogle Scholar
  44. Mason KL, Huffnagle GB, Noverr MC, Kao JY (2008) Overview of gut immunology. Adv Exp Med Biol 635:1–14. doi: 10.1007/978-0-387-09550-9_1 PubMedCrossRefGoogle Scholar
  45. Melnik S, Stoger E (2013) Green factories for biopharmaceuticals. Curr Med Chem 20(8):1038–1046PubMedGoogle Scholar
  46. Miyata T, Harakuni T, Taira T, Matsuzaki G, Arakawa T (2012) Merozoite surface protein-1 of Plasmodium yoelii fused via an oligosaccharide moiety of cholera toxin B subunit glycoprotein expressed in yeast induced protective immunity against lethal malaria infection in mice. Vaccine 30(5):948–958. doi: 10.1016/j.vaccine.2011.11.059 PubMedCrossRefGoogle Scholar
  47. Mizel SB, Bates JT (2010) Flagellin as an adjuvant: cellular mechanisms and potential. J Immunol 185(10):5677–5682. doi: 10.4049/jimmunol.1002156 Google Scholar
  48. Mowat AM (2003) Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol 3(4):331–341. doi: 10.1038/nri1057 PubMedCrossRefGoogle Scholar
  49. Mueller I, Galinski MR, Tsuboi T, Arevalo-Herrera M, Collins WE, King CL (2013) Natural acquisition of immunity to Plasmodium vivax: epidemiological observations and potential targets. Adv Parasitol 81:77–131. doi: 10.1016/B978-0-12-407826-0.00003-5 PubMedCrossRefGoogle Scholar
  50. Nayyar GM, Breman JG, Newton PN, Herrington J (2012) Poor-quality antimalarial drugs in southeast Asia and sub-Saharan Africa. Lancet Infect Dis 12(6):488–496. doi: 10.1016/S1473-3099(12)70064-6 PubMedCrossRefGoogle Scholar
  51. Patarroyo ME, Bermudez A, Moreno-Vranich A (2012) Towards the development of a fully protective Plasmodium falciparum antimalarial vaccine. Expert Rev Vaccines 11(9):1057–1070. doi: 10.1586/erv.12.57 PubMedCrossRefGoogle Scholar
  52. Qian F, Wu Y, Muratova O, Zhou H, Dobrescu G, Duggan P, Lynn L, Song G, Zhang Y, Reiter K, MacDonald N, Narum DL, Long CA, Miller LH, Saul A, Mullen GE (2007) Conjugating recombinant proteins to Pseudomonas aeruginosa ExoProtein A: a strategy for enhancing immunogenicity of malaria vaccine candidates. Vaccine 25(20):3923–3933. doi: 10.1016/j.vaccine.2007.02.073 PubMedCentralPubMedCrossRefGoogle Scholar
  53. Rasala BA, Lee PA, Shen Z, Briggs SP, Mendez M, Mayfield SP (2012) Robust expression and secretion of Xylanase1 in Chlamydomonas reinhardtii by fusion to a selection gene and processing with the FMDV 2A peptide. PLoS One 7(8):e43349. doi: 10.1371/journal.pone.0043349 PubMedCentralPubMedCrossRefGoogle Scholar
  54. Renukuntla J, Vadlapudi AD, Patel A, Boddu SH, Mitra AK (2013) Approaches for enhancing oral bioavailability of peptides and proteins. Int J Pharm 447(1–2):75–93. doi: 10.1016/j.ijpharm.2013.02.030 PubMedCrossRefGoogle Scholar
  55. Riley EM, Stewart VA (2013) Immune mechanisms in malaria: new insights in vaccine development. Nat Med 19(2):168–178. doi: 10.1038/nm.3083 PubMedCrossRefGoogle Scholar
  56. Rosales-Mendoza S, Rubio-Infante N, Govea-Alonso DO, Moreno-Fierros L (2012) Current status and perspectives of plant-based candidate vaccines against the human immunodeficiency virus (HIV). Plant Cell Rep 31(3):495–511. doi: 10.1007/s00299-011-1194-8 PubMedCrossRefGoogle Scholar
  57. RTS, S Clinical Trials Partnership (2012) A phase 3 trial of RTS, S/AS01 malaria vaccine in African infants. The New England journal of medicine 367(24):2284–2295. doi: 10.1056/NEJMoa1208394 CrossRefGoogle Scholar
  58. Rynda A, Maddaloni M, Mierzejewska D, Ochoa-Reparaz J, Maslanka T, Crist K, Riccardi C, Barszczewska B, Fujihashi K, McGhee JR, Pascual DW (2008) Low-dose tolerance is mediated by the microfold cell ligand, reovirus protein sigma1. J Immunol 180(8):5187–5200Google Scholar
  59. Sanchez J, Holmgren J (2011) Cholera toxin - a foe & a friend. Indian J Med Res 133:153–163PubMedGoogle Scholar
  60. Schuldt NJ, Amalfitano A (2012) Malaria vaccines: focus on adenovirus based vectors. Vaccine 30(35):5191–5198. doi: 10.1016/j.vaccine.2012.05.048 PubMedCrossRefGoogle Scholar
  61. Seder RA, Chang LJ, Enama ME, Zephir KL, Sarwar UN, Gordon IJ, Holman LA, James ER, Billingsley PF, Gunasekera A, Richman A, Chakravarty S, Manoj A, Velmurugan S, Li M, Ruben AJ, Li T, Eappen AG, Stafford RE, Plummer SH, Hendel CS, Novik L, Costner PJ, Mendoza FH, Saunders JG, Nason MC, Richardson JH, Murphy J, Davidson SA, Richie TL, Sedegah M, Sutamihardja A, Fahle GA, Lyke KE, Laurens MB, Roederer M, Tewari K, Epstein JE, Sim BK, Ledgerwood JE, Graham BS, Hoffman SL, the VRCST (2013) Protection against malaria by intravenous immunization with a nonreplicating sporozoite vaccine. Science. doi: 10.1126/science.1241800 PubMedGoogle Scholar
  62. Stanford M, Whittall T, Bergmeier LA, Lindblad M, Lundin S, Shinnick T, Mizushima Y, Holmgren J, Lehner T (2004) Oral tolerization with peptide 336–351 linked to cholera toxin B subunit in preventing relapses of uveitis in Behcet's disease. Clin Exp Immunol 137(1):201–208. doi: 10.1111/j.1365-2249.2004.02520.x PubMedCentralPubMedCrossRefGoogle Scholar
  63. Sun JB, Xiang Z, Smith KG, Holmgren J (2013) Important role for FcgammaRIIB on B lymphocytes for mucosal antigen-induced tolerance and Foxp3+ Regulatory T Cells. J Immunol 191(8):4412–4422. doi: 10.4049/jimmunol.1301324 PubMedCrossRefGoogle Scholar
  64. Surzycki R, Greenham K, Kitayama K, Dibal F, Wagner R, Rochaix JD, Ajam T, Surzycki S (2009) Factors effecting expression of vaccines in microalgae. Biologicals 37(3):133–138. doi: 10.1016/j.biologicals.2009.02.005 PubMedCrossRefGoogle Scholar
  65. Tovey MG, Lallemand C (2010) Adjuvant activity of cytokines. Methods Mol Biol 626:287–309. doi: 10.1007/978-1-60761-585-9_19 PubMedCrossRefGoogle Scholar
  66. Tran M, Van C, Barrera DJ, Pettersson PL, Peinado CD, Bui J, Mayfield SP (2013) Production of unique immunotoxin cancer therapeutics in algal chloroplasts. Proc Natl Acad Sci U S A 110(1):E15–E22. doi: 10.1073/pnas.1214638110 PubMedCentralPubMedCrossRefGoogle Scholar
  67. Uematsu S, Akira S (2009) Immune responses of TLR5(+) lamina propria dendritic cells in enterobacterial infection. J Gastroenterol 44(8):803–811. doi: 10.1007/s00535-009-0094-y PubMedCrossRefGoogle Scholar
  68. Vignali DA, Kuchroo VK (2012) IL-12 family cytokines: immunological playmakers. Nat Immunol 13(8):722–728. doi: 10.1038/ni.2366 Google Scholar
  69. World Health Organization (2012) World Malaria Report. World Health Organization, Geneva, SwitzerlandGoogle Scholar
  70. Yamamoto M, Pascual DW, Kiyono H (2012) M cell-targeted mucosal vaccine strategies. Curr Top Microbiol Immunol 354:39–52. doi: 10.1007/82_2011_134 PubMedGoogle Scholar
  71. Yarovinsky F, Zhang D, Andersen JF, Bannenberg GL, Serhan CN, Hayden MS, Hieny S, Sutterwala FS, Flavell RA, Ghosh S, Sher A (2005) TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science 308(5728):1626–1629. doi: 10.1126/science.1109893 Google Scholar
  72. Yusibov V, Streatfield SJ, Kushnir N (2011) Clinical development of plant-produced recombinant pharmaceuticals: vaccines, antibodies and beyond. Hum Vaccin 7(3):313–321PubMedCrossRefGoogle Scholar
  73. Zhan Y, Xu Y, Lew AM (2012) The regulation of the development and function of dendritic cell subsets by GM-CSF: more than a hematopoietic growth factor. Mol Immunol 52(1):30–37. doi: 10.1016/j.molimm.2012.04.009 Google Scholar
  74. Zou L, Miles AP, Wang J, Stowers AW (2003) Expression of malaria transmission-blocking vaccine antigen Pfs25 in Pichia pastoris for use in human clinical trials. Vaccine 21(15):1650–1657PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Pediatric Allergy and Immunology and the Jaffe Food Allergy InstituteIcahn School of Medicine at Mount SinaiNew YorkUSA
  2. 2.Division of Biological Sciences and the California Center for Algae BiotechnologyUniversity of California San DiegoLa JollaUSA

Personalised recommendations