Advertisement

Applied Microbiology and Biotechnology

, Volume 98, Issue 5, pp 1951–1961 | Cite as

Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects

  • Mahendra RaiEmail author
  • Kateryna Kon
  • Avinash Ingle
  • Nelson Duran
  • Stefania Galdiero
  • Massimiliano Galdiero
Mini-Review

Abstract

There are alarming reports of growing microbial resistance to all classes of antimicrobial agents used against different infections. Also the existing classes of anticancer drugs used against different tumours warrant the urgent search for more effective alternative agents for treatment. Broad-spectrum bioactivities of silver nanoparticles indicate their potential to solve many microbial resistance problems up to a certain extent. The antibacterial, antifungal, antiviral, antiprotozoal, acaricidal, larvicidal, lousicidal and anticancer activities of silver nanoparticles have recently attracted the attention of scientists all over the world. The aim of the present review is to discuss broad-spectrum multifunctional activities of silver nanoparticles and stress their therapeutic potential as smart nanomedicine. Much emphasis has been dedicated to the antimicrobial and anticancer potential of silver nanoparticles showing their promising characteristics for treatment, prophylaxis and control of infections, as well as for diagnosis and treatment of different cancer types.

Keywords

Silver nanoparticles Bioactivity Antimicrobial Antiarthropod Anticancer 

References

  1. Abebe L (2012) Silver impregnated ceramic water filters to treat Cryptosporidium parvum. CGH Symposium, 1 October 2012. http://prezi.com/fx_3-9w4ai0h/silver-nanoparticle-treated-cryptosporidium-parvum-response-in-mice/. Accessed 26 March 2013
  2. Abraham I, El-Sayed K, Chen ZS, Guo H (2012) Current status on marine products with reversal effect on cancer multidrug resistance. Mar Drugs 10:2312–2321PubMedCentralPubMedCrossRefGoogle Scholar
  3. Adhikari U, Ghosh A, Chandra G (2013) Nanoparticles of herbal origin: a recent eco-friend trend in mosquito control. Asian Pac J Trop Dis 3:167–168CrossRefGoogle Scholar
  4. Allahverdiyev AM, Abamor ES, Bagirova M, Rafailovich M (2011a) Antimicrobial effects of TiO(2) and Ag(2)O nanoparticles against drug-resistant bacteria and leishmania parasites. Future Microbiol 6:933–940PubMedCrossRefGoogle Scholar
  5. Allahverdiyev AM, Abamor ES, Bagirova M, Ustundag CB, Kaya C, Kaya F, Rafailovich M (2011b) Antileishmanial effect of silver nanoparticles and their enhanced antiparasitic activity under ultraviolet light. Int J Nanomedicine 6:2705–2714PubMedCentralPubMedCrossRefGoogle Scholar
  6. Allahverdiyev AM, Kon KV, Abamor ES, Bagirova M, Rafailovich M (2011c) Coping with antibiotic resistance: combination of nanoparticles with antibiotics and other antimicrobial agents. Expert Rev Anti-Infect Ther 9:1035–1052PubMedCrossRefGoogle Scholar
  7. Banerjee M, Mallick S, Paul A, Chattopadhyay A, Ghosh SS (2010) Heightened reactive oxygen species generation in the antimicrobial activity of a three component iodinated chitosan-silver nanoparticle composite. Langmuir 26:5901–5908PubMedCrossRefGoogle Scholar
  8. Baram-Pinto D, Shukla S, Perkas N, Gedanken A, Sarid R (2009) Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with mercaptoethane sulfonate. Bioconjug Chem 20:1497–1502PubMedCrossRefGoogle Scholar
  9. Bawaskar M, Gaikwad S, Ingle A, Rathod D, Gade A, Duran N, Marcato PD, Rai M (2010) A new report on mycosynthesis of silver nanoparticles by Fusarium culmorum. Curr Nanosci 6:376–380CrossRefGoogle Scholar
  10. Bhattacharyya SS, Das J, Das S, Samadder A, Das D, De A, Paul S, Khuda-Bukhsh AR (2012) Rapid green synthesis of silver nanoparticles from silver nitrate by a homeopathic mother tincture phytolacca decandra. Zhong Xi Yi Jie He Xue Bao 10:546–554PubMedCrossRefGoogle Scholar
  11. Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK (2009) Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol 48:173–179PubMedCrossRefGoogle Scholar
  12. Bonde SR, Rathod DP, Ingle AP, Ade RB, Gade AK, Rai MK (2012) Murraya koenigii-mediated synthesis of silver nanoparticles and its activity against three human pathogenic bacteria. Nanosci Meth 1:25–36CrossRefGoogle Scholar
  13. Conde J, Doria G, Baptista P (2012) Noble metal nanoparticles applications in cancer. J Drug Deliv 751075:1–12CrossRefGoogle Scholar
  14. Dar MA, Ingle A, Rai M (2013) Enhanced antimicrobial activity of silver nanoparticles synthesized by Cryphonectria sp. evaluated singly and in combination with antibiotics. Nanomedicine NBM 9:105–110CrossRefGoogle Scholar
  15. De-Gusseme B, Sintubin L, Baert L, Thibo E, Hennebel T, Vermeulen G, Uyttendaele M, Verstraete W, Boon N (2010) Biogenic silver for disinfection of water contaminated with viruses. Appl Environ Microbiol 76:1082–1087PubMedCentralPubMedCrossRefGoogle Scholar
  16. De-Lima R, Seabra AB, Durán N (2012) Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. J Appl Toxicol 32:867–879PubMedCrossRefGoogle Scholar
  17. De-Lima R, Feitosa LO, Ballottin D, Marcato PD, Tasic L, Durán N (2013) Cytotoxicity and genotoxicity of biogenic silver nanoparticles. J Phys Conf Series 429:012020CrossRefGoogle Scholar
  18. Devi LS, Joshi SR (2012) Antimicrobial and synergistic effects of silver nanoparticles synthesized using soil fungi of high altitudes of Eastern Himalaya. Mycobiol 40:27–34CrossRefGoogle Scholar
  19. Duran N, Marcato PD (2013) Nanobiotechnology perspectives: role of nanotechnology in the food industry: a review. Int J Food Sci Technol 48:1127–1134CrossRefGoogle Scholar
  20. Duran N, Marcato PD, Teixeira Z, Durán M, Costa FTM, Brocchi M (2009) State of the art of nanobiotechnology applications in neglected diseases. Curr Nanosci 5:396–408CrossRefGoogle Scholar
  21. Duran N, Marcato PD, De-Conti R, Alves OL, Costa FTM, Brocchi M (2010) Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J Braz Chem Soc 21:949–959CrossRefGoogle Scholar
  22. Durand R, Bouvresse S, Berdjane Z, Izri A, Chosidow O, Clark JM (2012) Insecticide resistance in head lice: clinical, parasitological and genetic aspects. Clin Microbiol Infect 18:338–344PubMedCrossRefGoogle Scholar
  23. Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3:6CrossRefGoogle Scholar
  24. Elliott C (2010) The effects of silver dressings on chronic and burns wound healing. Br J Nurs 19:S32–S36PubMedGoogle Scholar
  25. Fall B, Pascual A, Sarr FD, Wurtz N, Richard V, Baret E, Diémé Y, Briolant S, Bercion R, Wade B, Tall A, Pradines B (2013) Plasmodium falciparum susceptibility to antimalarial drugs in Dakar, Senegal, in 2010: an ex vivo and drug resistance molecular markers study. Malar J 12:107Google Scholar
  26. Fayaz AM, Ao Z, Girilal M, Chen L, Xiao X, Kalaichelvan P, Yao X (2012) Inactivation of microbial infectiousness by silver nanoparticles-coated condom: a new approach to inhibit HIV- and HSV-transmitted infection. Int J Nanomedicine 7:5007–5018Google Scholar
  27. Gade A, Gaikwad S, Tiwari V, Yadav A, Ingle A, Rai M (2010) Biofabrication of silver nanoparticles by Opuntia ficus-indica: in vitro antibacterial activity and study of the mechanism involved in the synthesis. Curr Nanosci 6:370–375CrossRefGoogle Scholar
  28. Gaikwad S, Ingle A, Gade A, Rai M, Falanga A, Incoronato N, Russo L, Aldiero S, Galdiero M (2013) Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. Int J Nanomedicine 3(8):4303–4314Google Scholar
  29. Gajbhiye MB, Kesharwani JG, Ingle AP, Gade AK, Rai MK (2009) Fungus mediated synthesis of silver nanoparticles and its activity against pathogenic fungi in combination of fluconazole. Nanomedicine NBM 5:282–286CrossRefGoogle Scholar
  30. Galdiero S, Falanga A, Vitiello M, Marra MCV, Galdiero M (2011) Silver nanoparticles as potential antiviral agents molecules. Molecules 16:8894–8918PubMedCrossRefGoogle Scholar
  31. Galdiero S, Falanga A, Cantisani M, Ingle A, Galdiero M, Rai M  (2014) Silver nanoparticles as novel antibacterial and antiviral agents, In: Frontiers of Nanomedical Research, Worlds Scientific Publishing 2014, in pressGoogle Scholar
  32. Howard CR, Fletcher NF (2012) Emerging virus diseases: can we ever expect the unexpected? Emerg Microbes Infect 1:e46PubMedCentralCrossRefGoogle Scholar
  33. Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai M (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144CrossRefGoogle Scholar
  34. Ingle A, Rai M, Gade G, Bawaskar M (2009) Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J Nanopart Res 11:2079–2085CrossRefGoogle Scholar
  35. Jacob SJP, Finu JS, Narayanan A (2012) Synthesis of silver nanoparticles using Piper longum leaf extracts and its cytotoxic activity against Hep-2 cell line. Colloids Surf B: Biointerfaces 91:212–214PubMedCrossRefGoogle Scholar
  36. Jaidev LR, Narasimha G (2010) Fungal mediated biosynthesis of silver nanoparticles, characterization and antimicrobial activity. Colloids Surf B: Biointerfaces 81:430–433PubMedCrossRefGoogle Scholar
  37. Jain KK (2010) Advances in the field of nano-oncology. BMC Med 8:1–11CrossRefGoogle Scholar
  38. Jayaseelan C, Rahuman AA (2012) Acaricidal efficacy of synthesized silver nanoparticles using aqueous leaf extract of Ocimum canum against Hyalomma anatolicum anatolicum and Hyalomma marginatum isaaci (Acari: Ixodidae). Parasitol Res 111:1369–1378PubMedCrossRefGoogle Scholar
  39. Jayaseelan C, Rahuman AA, Rajakumar G, Santhoshkumar T, Kirthi AV, Marimuthu S, Bagavan A, Kamaraj C, Zahir AA, Elango G, Velayutham K, Rao KV, Karthik L, Raveendran S (2012) Efficacy of plant-mediated synthesized silver nanoparticles against hematophagous parasites. Parasitol Res 111:921–933PubMedCrossRefGoogle Scholar
  40. Jeyaraj M, Rajesh M, Arun R, MubarakAli D, Sathishkumar G, Sivanandhan G, Dev KG, Manickavasagam M, Premkumar K, Thajuddin N, Ganapathi A (2013a) An investigation on the cytotoxicity and caspase-mediated apoptotic effect of biologically synthesized silver nanoparticles using Podophyllum hexandrum on human cervical carcinoma cells. Colloids Surf B: Biointerfaces 102:708–717PubMedCrossRefGoogle Scholar
  41. Jeyaraj M, Sathishkumar G, Sivanandhan G, Mubarak-Ali D, Rajesh M, Arun R, Apildev G, Manickavasagam M, Thajuddin N, Premkumar K, Ganapathi A (2013b) Biogenic silver nanoparticles for cancer treatment: an experimental report. Colloids Surf B: Biointerfaces 106:86–92PubMedCrossRefGoogle Scholar
  42. Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93:1037–1043CrossRefGoogle Scholar
  43. Johnson AP (2011) Methicillin resistant Staphylococcus aureus: the European landscape. J Antimicrob Chemother 66:iv43–iv48PubMedGoogle Scholar
  44. Johnson VA, Calvez V, Gunthard HF, Paredes R, Pillay D, Shafer RW, Wensing AM, Richman DD (2013) Update of the drug resistance mutations in HIV-1: March 2013. Top Antivir Med 21:6–14PubMedGoogle Scholar
  45. Kamareddine L (2012) The biological control of the malaria vector. Toxins (Basel) 4:748–767CrossRefGoogle Scholar
  46. Kandile NG, Zaky HT, Mohamed MI, Mohamed HM (2010) Silver nanoparticles effect on antimicrobial and antifungal activity of new heterocycles. Bull Kor Chem Soc 31:3530–3538CrossRefGoogle Scholar
  47. Kaur P, Thakur R, Choudhary A (2012) An in vitro study of the antifungal activity of silver/chitosan nanoformulations against important seed borne pathogens. Int J Sci Technol Res 1:83–86Google Scholar
  48. Kilpatrick AM, Randolph SE (2012) Drivers, dynamics, and control of emerging vector-borne zoonotic diseases. Lancet 380:1946–1955PubMedCentralPubMedCrossRefGoogle Scholar
  49. Kim KJ, Sung WS, Moon SK, Choi JS, Kim JG, Lee DG (2008) Antifungal effect of silver nanoparticles on dermatophytes. J Microbiol Biotechnol 18:1482–1484PubMedGoogle Scholar
  50. Kim KJ, Sung WS, Suh BK, Moon SK, Choi JS, Kim JG, Lee DG (2009) Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals 22:235–242PubMedCrossRefGoogle Scholar
  51. Korich DG, Mead JR, Madore MS, Sinclair NA, Sterling CR (1990) Effects of ozone, chlorine dioxide, chlorine, and monochloramine on Cryptosporidium parvum oocyst viability. Appl Environ Microbiol 56:1423–1428PubMedCentralPubMedGoogle Scholar
  52. Lara HH, Ayala-Nunez NV, Ixtepan-Turrent L, Rodriguez-Padilla C (2010a) Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnol 8:1CrossRefGoogle Scholar
  53. Lara HH, Ixtepan-Turrent L, Garza-Treviño EN, Rodriguez-Padilla C (2010b) PVP-coated silver nanoparticles block the transmission of cell-free and cell-associated HIV-1 in human cervical culture. J Nanobiotechnol 8:15–25CrossRefGoogle Scholar
  54. Lara HH, Ixtepan-Turrent L, Garza-Treviño EN, Singh DK (2011) Use of silver nanoparticles increased inhibition of cell-associated HIV-1 infection by neutralizing antibodies developed against HIV-1 envelope proteins. J Nanobiotechnol 9:38CrossRefGoogle Scholar
  55. Liu HL, Dai SA, Fu KY, Hsu SH (2010) Antibacterial properties of silver nanoparticles in three different sizes and their nanocomposites with a new waterborne polyurethane. Int J Nanomedicine 5:1017–1028PubMedCentralPubMedCrossRefGoogle Scholar
  56. Lu L, Sun RW, Chen R, Hui CK, Ho CM, Luk JM, Lau GK, Che CM (2008) Silver nanoparticles inhibit hepatitis B virus replication. Antivir Ther 13:253–262PubMedGoogle Scholar
  57. Marr AK, McGwire BS, McMaster WR (2012) Modes of action of leishmanicidal antimicrobial peptides. Future Microbiol 7:1047–1059PubMedCrossRefGoogle Scholar
  58. Marsich E, Travan A, Donati I, Turco G, Kulkova J, Moritz N, Aro HT, Crosera M, Paoletti S (2013) Biological responses of silver-coated thermosets: an in vitro and in vivo study. Acta Biomater 9:5088–5099PubMedCrossRefGoogle Scholar
  59. Mehrbod P, Motamed N, Tabatabaian M, Soleimani ER, Amini E, Shahidi M, Kheiri MT (2009) In vitro antiviral effect of “nanosilver” on influenza virus. DARU 17:88–93Google Scholar
  60. Misra R, Acharya S, Sahoo SK (2010) Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug Discov Today 15:842–850PubMedCrossRefGoogle Scholar
  61. Mohebali M, Rezayat MM, Gilani K, Sarkar S, Akhoundi B, Esmaeili J, Satvat T, Elikaee S, Charehdar S, Hooshyar H (2009) Nanosilver in the treatment of localized cutaneous leishmaniasis caused by Leishmania major (MRHO/IR/75/ER): an in vitro and in vivo study. DARU J Pharm Sci 17:285–289Google Scholar
  62. Murray HW (1981) Susceptibility of Leishmania to oxygen intermediates and killing by normal macrophages. J Exp Med 153:1302–1315PubMedCentralPubMedCrossRefGoogle Scholar
  63. Murugan K, Shri KP, Barnard D (2013) Green synthesis of silver nanoparticles from botanical sources and their use for control of medical insects and malaria parasites. http://www.ars.usda.gov/research/publications/publications.htm?seq_no_115=281989. Accessed 26 March 2013
  64. Narasimha G (2012) Antiviral activity of silver nanoparticles synthesized by fungal strain Aspergillus niger. J Nanosci Nanotechnol 6(1):18–20Google Scholar
  65. Nasrollahi A, Pourshamsian K, Mansourkiaee P (2011) Antifungal activity of silver nanoparticles on some of fungi. Int J Nanotechnol 1:233–239Google Scholar
  66. Nilforoushzadeh MA, Shirani-Bidabadi LA, Zolfaghari-Baghbaderani A, Jafari R, Heidari-Beni M, Siadat A, Ghahraman-Tabrizi M (2012) Topical effectiveness of different concentrations of nanosilver solution on Leishmania major lesions in balb/c mice. J Vector Borne Dis 49:249–253PubMedGoogle Scholar
  67. Pal S, Tak UK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720PubMedCentralPubMedCrossRefGoogle Scholar
  68. Panneerselvam C, Ponarulselvam S, Murugan K (2011) Potential anti-plasmodial activity of synthesized silver nanoparticle using Andrographis paniculata nees (Acanthaceae). Archives of Applied Science Research 3(6):208–217Google Scholar
  69. Piao MJ, Kang KA, Lee IK, Kim HS, Kim S, Choi YJ, Choi J, Hyun JW (2011) Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett 201:92–100PubMedCrossRefGoogle Scholar
  70. Ponarulselvam S, Panneerselvam C, Murugan K, Aarthi N, Kalimuthu K, Thangamani S (2012) Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian Pac J Trop Biomed 2:574–580PubMedCentralPubMedCrossRefGoogle Scholar
  71. Prabhu D, Arulvasu C, Babu G, Manikandan R, Srinivasan P (2013) Biologically synthesized green silver nanoparticles from leaf extract of Vitex negundo L. induce growth-inhibitory effect on human colon cancer cell line HCT15. Process Biochem 48:317–324CrossRefGoogle Scholar
  72. Qiao W, Wang B, Wang Y, Yang L, Zhang Y, Shao P (2010) Cancer therapy based on nanomaterials and nanocarrier systems. J Nanomater 796303:1–9CrossRefGoogle Scholar
  73. Raghavendra K, Barik TK, Reddy BP, Sharma P, Dash AP (2011) Malaria vector control: from past to future. Parasitol Res 108:757–779PubMedCrossRefGoogle Scholar
  74. Raheman F, Deshmukh S, Ingle A, Gade A, Rai M (2011) Silver nanoparticles: novel antimicrobial agent synthesized from an endophytic fungus Pestalotia sp. isolated from leaves of Syzygium cumini (L). Nano Biomed Eng 3(3):174–178CrossRefGoogle Scholar
  75. Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94:287–293PubMedCrossRefGoogle Scholar
  76. Rai MK, Yadav AP, Gade AK (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–82PubMedCrossRefGoogle Scholar
  77. Rai M, Gade A, Gaikwad S, Marcato PD, Durán N (2012) Biomedical applications of nanobiosensors: the state-of-the-art. J Braz Chem Soc 23:14–24Google Scholar
  78. Rigo C, Ferroni L, Tocco I, Roman M, Munivrana I, Gardin C, Cairns WR, Vindigni V, Azzena B, Barbante C, Zavan B (2013) Active silver nanoparticles for wound healing. Int J Mol Sci 14:4817–4840PubMedCentralPubMedCrossRefGoogle Scholar
  79. Roger JV, Parkinson CV, Choi YW, Speshock JL, Hussain SM (2008) A Preliminary assessment of silver nanoparticle inhibition of monkeypox virus plciue formation. Nanoscale Res Lett 3:129–133CrossRefGoogle Scholar
  80. Rossi-Bergmann B, Pacienza-Lima W, Marcato PD, De-Conti R, Durán N (2012) Therapeutic potential of biogenic silver nanoparticles in murine cutaneous leishmaniasis. J Nano Res 20:89–97CrossRefGoogle Scholar
  81. Said DE, Elsamad LM, Gohar YM (2012) Validity of silver, chitosan, and curcumin nanoparticles as anti-Giardia agents. Parasitol Res 111:545–554PubMedCrossRefGoogle Scholar
  82. Salem ANB, Zyed R, Lassoued MA, Nidhal S, Sfar S, Mahjoub A (2012) Plant-derived nanoparticles enhance antiviral activity against coxsakievirus B3 by acting on virus particles and vero cells. Dig J Nanomater Biostruct 7:737–744Google Scholar
  83. Salunkhe RB, Patil SV, Patil CD, Salunke BK (2011) Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera; Culicidae). Parasitol Res 109:823–831PubMedCrossRefGoogle Scholar
  84. Satyavani K, Gurudeeban S, Ramanathan T, Balasubramanian T (2012) Toxicity study of silver nanoparticles synthesized from Suaeda monoica on Hep-2 cell line. Avicenna J Med Biotech 4:35–39Google Scholar
  85. Savithramma N, Rao ML, Rukmini K, Suvarnalatha-Devi P (2011) Antimicrobial activity of silver nanoparticles synthesized by using medicinal plants. Int J Chem Technol Res 3:1394–1402Google Scholar
  86. Seigneuric R, Markey L, Nuyten DSA, Dubernet C, Evelo CTA, Finot E, Garrido C (2010) From nanotechnology to nanomedicine: applications to cancer research. Curr Mol Med 10:640–652PubMedCrossRefGoogle Scholar
  87. Shameli K, Ahmad MB, Jazayeri SD, Shabanzadeh P, Sangpour P, Jahangirian H, Gharayebi Y (2012) Investigation of antibacterial properties silver nanoparticles prepared via green method. Chem Central J 6:73CrossRefGoogle Scholar
  88. Shio MT, Olivier M (2010) Editorial: Leishmania survival mechanisms: the role of host phosphatases. J Leukoc Biol 88:1–3Google Scholar
  89. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci 275:177–182PubMedCrossRefGoogle Scholar
  90. Speshock JL, Murdock RC, Braydich-Stolle LK, Schrand AM, Hussain SM (2010) Interaction of silver nanoparticles with tacaribe virus. J Nanobiotechnol 8:19CrossRefGoogle Scholar
  91. Sriram MI, Barath S, Kanth M, Kalishwaralal K, Gurunathan S (2010) Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model. Int J Nanomed 5:753–762Google Scholar
  92. Su YH, Varhue W, Liao KT, Swami N (2012) Characterizing silver nanoparticle-induced modifications to the dielectric response of Cryptosporidia oocysts. Annual Meeting of the American Electrophoresis Society (AES)Google Scholar
  93. Subarani S, Sabhanayakam S, Kamaraj C (2013) Studies on the impact of biosynthesized silver nanoparticles (AgNPs) in relation to malaria and filariasis vector control against Anopheles stephensi liston and Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 112:487–499PubMedCrossRefGoogle Scholar
  94. Sun RW, Chen R, Chung NP, Ho CM, Lin CL, Che CM (2005) Silver nanoparticles fabricated in hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells. Chem Commun 40:5059–5061CrossRefGoogle Scholar
  95. Sun L, Singh AK, Vig K, Pillai SR, Singh SR (2008) Silver nanoparticles inhibit replication of respiratory syncytial virus. J Biomed Biotechnol 4:149–158Google Scholar
  96. Tile VA, Bholay AD (2012) Biosynthesis of silver nanoparticles and its antifungal activities. J Environ Res Develop 7:338–345Google Scholar
  97. Trefry JC, Wooley DP (2013) Silver nanoparticles inhibit vaccinia virus infection by preventing viral entry through a macropinocytosis-dependent mechanism. J Biomed Nanotech 9:1624–1635CrossRefGoogle Scholar
  98. Xiang DX, Chen Q, Pang L, Zheng CL (2011) Inhibitory effects of silver nanoparticles on H1N1 influenza a virus in vitro. J Virol Methods 178:137–142PubMedCrossRefGoogle Scholar
  99. Xu Y, Gao C, Li X, He Y, Zhou L, Pang G, Sun S (2013) In vitro antifungal activity of silver nanoparticles against ocular pathogenic filamentous fungi. J Ocul Pharmacol Ther 29:270–274PubMedCrossRefGoogle Scholar
  100. Zhang H, Smith JA, Oyanedel-Craver V (2012) The effect of natural water conditions on the anti-bacterial performance and stability of silver nanoparticles capped with different polymers. Water Res 46:691–699PubMedCrossRefGoogle Scholar
  101. Zhang K, Li F, Imazato S, Cheng L, Liu H, Arola DD, Bai Y, Xu HH (2013) Dual antibacterial agents of nano-silver and 12-methacryloyloxydodecylpyridinium bromide in dental adhesive to inhibit caries. J Biomed Mater Res B Appl Biomater 101:929–938PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Mahendra Rai
    • 1
    • 4
    Email author
  • Kateryna Kon
    • 2
  • Avinash Ingle
    • 1
  • Nelson Duran
    • 3
    • 4
  • Stefania Galdiero
    • 5
    • 7
  • Massimiliano Galdiero
    • 6
    • 7
  1. 1.Department of BiotechnologySant Gadge Baba Amravati UniversityAmravatiIndia
  2. 2.Department of Microbiology, Virology and ImmunologyKharkiv National Medical UniversityKharkivUkraine
  3. 3.Centre of Natural and Human Science and Universidade Federal do ABCSanto AndreBrazil
  4. 4.Biological Chemistry Laboratory, Instituto de QuímicaUniversidade Estadual de CampinasCampinasBrazil
  5. 5.Department of PharmacyUniversity of Naples “Federico II”NaplesItaly
  6. 6.Division of Microbiology, Department of Experimental MedicineII University of NaplesNaplesItaly
  7. 7.CIRPEB University of Naples “Federico II” and Istituto di Biostrutture e Bioimmagini, CNRNaplesItaly

Personalised recommendations