Applied Microbiology and Biotechnology

, Volume 98, Issue 4, pp 1517–1529 | Cite as

Recent trends and novel concepts in cofactor-dependent biotransformations

  • Selin Kara
  • Joerg H. Schrittwieser
  • Frank Hollmann
  • Marion B. Ansorge-Schumacher


Cofactor-dependent enzymes catalyze a broad range of synthetically useful transformations. However, the cofactor requirement also poses economic and practical challenges for the application of these biocatalysts. For three decades, considerable research effort has been devoted to the development of reliable in situ regeneration methods for the most commonly employed cofactors, particularly NADH and NADPH. Today, researchers can choose from a plethora of options, and oxidoreductases are routinely employed even on industrial scale. Nevertheless, more efficient cofactor regeneration methods are still being developed, with the aim of achieving better atom economy, simpler reaction setups, and higher productivities. Besides, cofactor dependence has been recognized as an opportunity to confer novel reactivity upon enzymes by engineering their cofactors, and to couple (redox) biotransformations in multi-enzyme cascade systems. These novel concepts will help to further establish cofactor-dependent biotransformations as an attractive option for the synthesis of biologically active compounds, chiral building blocks, and bio-based platform molecules.


Biocatalysis Enzyme cofactor Cofactor regeneration Cascade reaction Designer cells Non-natural cofactors 



JHS thanks the Austrian Science Fund (FWF) for financial support in the form of an “Erwin Schrödinger” fellowship (J3244-N17).


  1. Ansell RJ, Lowe CR (1999) Artificial redox coenzymes: biomimetic analogues of NAD+. Appl Microbiol Biotechnol 51(6):703–710. doi: 10.1007/s002530051455 CrossRefGoogle Scholar
  2. Berenguer-Murcia A, Fernandez-Lafuente R (2010) New trends in the recycling of NAD(P)H for the design of sustainable asymmetric reductions catalyzed by dehydrogenases. Curr Org Chem 14(10):1000–1021CrossRefGoogle Scholar
  3. Berkessel A, Rollmann C, Chamouleau F, Labs S, May O, Gröger H (2007) Practical two-step synthesis of an enantiopure aliphatic terminal (S)-epoxide based on reduction of haloalkanones with “designer cells”. Adv Synth Catal 349(17–18):2697–2704. doi: 10.1002/adsc.200700244 CrossRefGoogle Scholar
  4. Bernard J, van Heerden E, Arends IWCE, Opperman DJ, Hollmann F (2012) Chemoenzymatic reduction of conjugated C=C double bonds. ChemCatChem 4(2):196–199. doi: 10.1002/cctc.201100312 Google Scholar
  5. Bisogno FR, Lavandera I, Kroutil W, Gotor V (2009) Tandem concurrent processes: one-pot single-catalyst biohydrogen transfer for the simultaneous preparation of enantiopure secondary alcohols. J Org Chem 74(4):1730–1732. doi: 10.1021/jo802350f PubMedCrossRefGoogle Scholar
  6. Bisogno FR, García-Urdiales E, Valdés H, Lavandera I, Kroutil W, Suárez D, Gotor V (2010a) Ketone–alcohol hydrogen-transfer equilibria: is the biooxidation of halohydrins blocked? Chem Eur J 16(36):11012–11019. doi: 10.1002/chem.201001233 PubMedCrossRefGoogle Scholar
  7. Bisogno FR, Rioz-Martínez A, Rodríguez C, Lavandera I, de Gonzalo G, Torres Pazmiño DE, Fraaije MW, Gotor V (2010b) Oxidoreductases working together: concurrent obtaining of valuable derivatives by employing the PIKAT method. ChemCatChem 2(8):946–949. doi: 10.1002/cctc.201000115 CrossRefGoogle Scholar
  8. Boonstra B, Rathbone DA, French CE, Walker EH, Bruce NC (2000) Cofactor regeneration by a soluble pyridine nucleotide transhydrogenase for biological production of hydromorphone. Appl Environ Microbiol 66(12):5161–5166. doi: 10.1128/AEM.66.12.5161-5166.2000 PubMedCentralPubMedCrossRefGoogle Scholar
  9. Boonstra B, Rathbone DA, Bruce NC (2001) Engineering novel biocatalytic routes for production of semisynthetic opiate drugs. Biomol Eng 18(2):41–47. doi: 10.1016/S1389-0344(01)00084-3 PubMedCrossRefGoogle Scholar
  10. Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K (2012) Engineering the third wave of biocatalysis. Nature 485(7397):185–194. doi: 10.1038/nature11117 PubMedCrossRefGoogle Scholar
  11. Campbell E, Meredith M, Minteer SD, Banta S (2012) Enzymatic biofuel cells utilizing a biomimetic cofactor. Chem Commun 48(13):1898–1900. doi: 10.1039/c2cc16156g CrossRefGoogle Scholar
  12. Chenault HK, Whitesides GM (1987) Regeneration of nicotinamide cofactors for use in organic synthesis. Appl Biochem Biotechnol 14:147–197PubMedCrossRefGoogle Scholar
  13. Churakova E, Tomaszewski B, Buehler K, Schmid A, Arends I, Hollmann F (2013) Hydrophobic formic acid esters for cofactor regeneration in aqueous/organic two-liquid phase systems. Top Catal. doi: 10.1007/s11244-013-0195-y Google Scholar
  14. de Gonzalo G, Fraaije MW (2013) Recent developments in flavin-based catalysis. ChemCatChem 5(2):403–415. doi: 10.1002/cctc.201200466 CrossRefGoogle Scholar
  15. de Gonzalo G, Smit C, Jin J, Minnaard AJ, Fraaije MW (2011) Turning a riboflavin-binding protein into a self-sufficient monooxygenase by cofactor redesign. Chem Commun 47(39):11050–11052. doi: 10.1039/c1cc14039f CrossRefGoogle Scholar
  16. Eixelsberger T, Woodley JM, Nidetzky B, Kratzer R (2013) Scale-up and intensification of (S)-1-(2-chlorophenyl)ethanol bioproduction: economic evaluation of whole cell-catalyzed reduction of o-chloroacetophenone. Biotechnol Bioeng 110(8):2311–2315. doi: 10.1002/bit.24896 PubMedCrossRefGoogle Scholar
  17. Ema T, Ide S, Okita N, Sakai T (2008) Highly efficient chemoenzymatic synthesis of methyl (R)-o-chloromandelate, a key intermediate for clopidogrel, via asymmetric reduction with recombinant Escherichia coli. Adv Synth Catal 350(13):2039–2044. doi: 10.1002/adsc.200800292 CrossRefGoogle Scholar
  18. Faber K (2011) Biotransformations in organic chemistry, 6th edn. Springer, BerlinCrossRefGoogle Scholar
  19. Gargiulo S, Opperman DJ, Hanefeld U, Arends IWCE, Hollmann F (2012) A biocatalytic redox isomerisation. Chem Commun 48(53):6630–6632. doi: 10.1039/c2cc31947k CrossRefGoogle Scholar
  20. Gonçalves LPB, Antunes OAC, Pinto GF, Oestreicher EG (2000) Simultaneous enzymatic synthesis of (S)-3-fluoroalanine and (R)-3-fluorolactic acid. Tetrahedron Asymmetry 11(7):1465–1468. doi: 10.1016/S0957-4166(00)00096-3 CrossRefGoogle Scholar
  21. Gonçalves LPB, Antunes OAC, Pinto GF, Oestreicher EG (2003) Kinetic aspects involved in the simultaneous enzymatic synthesis of (S)-3-fluoroalanine and (R)-3-fluorolactic acid. J Fluor Chem 124(2):219–227. doi: 10.1016/j.jfluchem.2003.08.009 CrossRefGoogle Scholar
  22. Gonçalves LPB, Antunes OAC, Oestreicher EG (2006) Thermodynamics and kinetic aspects involved in the enzymatic resolution of (R, S)-3-fluoroalanine in a coupled system of redox reactions catalyzed by dehydrogenases. Org Process Res Dev 10(3):673–677. doi: 10.1021/op060027o Google Scholar
  23. Grau MM, van der Toorn JC, Otten LG, Macheroux P, Taglieber A, Zilly FE, Arends IWCE, Hollmann F (2009) Photoenzymatic reduction of C = C double bonds. Adv Synth Catal 351(18):3279–3286. doi: 10.1002/adsc.200900560 Google Scholar
  24. Gröger H, Chamouleau F, Orologas N, Rollmann C, Drauz K, Hummel W, Weckbecker A, May O (2006) Enantioselective reduction of ketones with “designer cells” at high substrate concentrations: highly efficient access to functionalized optically active alcohols. Angew Chem Int Ed 45(34):5677–5681. doi: 10.1002/anie.200503394 Google Scholar
  25. Hefti MH, Vervoort J, Van Berkel WJH (2003) Deflavination and reconstitution of flavoproteins: tackling fold and function. Eur J Biochem 270(21):4227–4242. doi: 10.1046/j.1432-1033.2003.03802.x PubMedCrossRefGoogle Scholar
  26. Herr N, Ratzka J, Lauterbach L, Lenz O, Ansorge-Schumacher MB (2013) Stability enhancement of an O2-tolerant NAD+-reducing [NiFe]-hydrogenase by a combination of immobilisation and chemical modification. J Mol Catal B Enzym 97:169–174. doi: 10.1016/j.molcatb.2013.06.009 CrossRefGoogle Scholar
  27. Höhne M, Bornscheuer UT (2009) Biocatalytic routes to optically active amines. ChemCatChem 1(1):42–51. doi: 10.1002/cctc.200900110 CrossRefGoogle Scholar
  28. Hollmann F, Arends IWCE, Holtmann D (2011) Enzymatic reductions for the chemist. Green Chem 13(9):2285. doi: 10.1039/c1gc15424a CrossRefGoogle Scholar
  29. Huisman GW, Collier SJ (2013) On the development of new biocatalytic processes for practical pharmaceutical synthesis. Curr Opin Chem Biol 17(2):284–292. doi: 10.1016/j.cbpa.2013.01.017 PubMedCrossRefGoogle Scholar
  30. Islam K, Zheng W, Yu H, Deng H, Luo M (2011) Expanding cofactor repertoire of protein lysine methyltransferase for substrate labeling. ACS Chem Biol 6(7):679–684. doi: 10.1021/cb2000567 PubMedCentralPubMedCrossRefGoogle Scholar
  31. Jakoblinnert A, Mladenov R, Paul A, Sibilla F, Schwaneberg U, Ansorge-Schumacher MB, de Maria PD (2011) Asymmetric reduction of ketones with recombinant E. coli whole cells in neat substrates. Chem Commun 47(44):12230–12232. doi: 10.1039/c1cc14097c CrossRefGoogle Scholar
  32. Kara S, Schrittwieser JH, Hollmann F (2013a) Strategies for cofactor regeneration in biocatalyzed reductions, in synthetic methods for biologically active molecules: exploring the potential of bioreductions (ed E. Brenna), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. doi: 10.1002/9783527665785.ch08
  33. Kara S, Spickermann D, Schrittwieser JH, Leggewie C, van Berkel WJH, Arends IWCE, Hollmann F (2013b) More efficient redox biocatalysis by utilising 1,4-butanediol as a ‘smart cosubstrate’. Green Chem 15(2):330–335. doi: 10.1039/c2gc36797a Google Scholar
  34. Klimašauskas S, Weinhold E (2007) A new tool for biotechnology: AdoMet-dependent methyltransferases. Trends Biotechnol 25(3):99–104. doi: 10.1016/j.tibtech.2007.01.006 PubMedCrossRefGoogle Scholar
  35. Koszelewski D, Tauber K, Faber K, Kroutil W (2010) ω-Transaminases for the synthesis of non-racemic α-chiral primary amines. Trends Biotechnol 28(6):324–332. doi: 10.1016/j.tibtech.2010.03.003 PubMedCrossRefGoogle Scholar
  36. Lavandera I, Kern A, Resch V, Ferreira-Silva B, Glieder A, Fabian WMF, de Wildeman S, Kroutil W (2008) One-way biohydrogen transfer for oxidation of sec-alcohols. Org Lett 10(11):2155–2158. doi: 10.1021/ol800549f Google Scholar
  37. Lee BWK, Sun HG, Zang T, Kim BJ, Alfaro JF, Zhou ZS (2010) Enzyme-catalyzed transfer of a ketone group from an S-adenosylmethionine analogue: a tool for the functional analysis of methyltransferases. J Am Chem Soc 132(11):3642–3643. doi: 10.1021/ja908995p PubMedCentralPubMedCrossRefGoogle Scholar
  38. Lerchner A, Achatz S, Rausch C, Haas T, Skerra A (2013) Coupled enzymatic alcohol-to-amine conversion of isosorbide using engineered transaminases and dehydrogenases. ChemCatChem 5:3374–3383. doi: 10.1002/cctc.201300284 Google Scholar
  39. Liu W, Wang P (2007) Cofactor regeneration for sustainable enzymatic biosynthesis. Biotechnol Adv 25(4):369–384. doi: 10.1016/j.biotechadv.2007.03.002 PubMedCrossRefGoogle Scholar
  40. Lo HC, Fish RH (2002) Biomimetic NAD + models for tandem cofactor regeneration, horse liver alcohol dehydrogenase recognition of 1,4-NADH derivatives, and chiral synthesis. Angew Chem Int Ed 41(3):478–481. doi: 10.1002/1521-3773(20020201)41:3<478::aid-anie478>;2-k CrossRefGoogle Scholar
  41. Lutz J, Hollmann F, Ho TV, Schnyder A, Fish RH, Schmid A (2004) Bioorganometallic chemistry: biocatalytic oxidation reactions with biomimetic NAD+/NADH co-factors and [Cp*Rh(bpy)H]+ for selective organic synthesis. J Organomet Chem 689(25):4783–4790. doi: 10.1016/j.jorganchem.2004.09.044 CrossRefGoogle Scholar
  42. Mallin H, Wulf H, Bornscheuer UT (2013) A self-sufficient Baeyer–Villiger biocatalysis system for the synthesis of ε-caprolactone from cyclohexanol. Enzym Microbiol Technol 53(4):283–287. doi: 10.1016/j.enzmictec.2013.01.007 Google Scholar
  43. Mathew S, Yun H (2012) ω-Transaminases for the production of optically pure amines and unnatural amino acids. ACS Catal 2(6):993–1001. doi: 10.1021/cs300116n CrossRefGoogle Scholar
  44. Matsuda T, Yamanaka R, Nakamura K (2009) Recent progress in biocatalysis for asymmetric oxidation and reduction. Tetrahedron Asymmetry 20(5):513–557. doi: 10.1016/j.tetasy.2008.12.035 CrossRefGoogle Scholar
  45. Meyer H-P, Eichhorn E, Hanlon S, Lutz S, Schurmann M, Wohlgemuth R, Coppolecchia R (2013) The use of enzymes in organic synthesis and the life sciences: perspectives from the Swiss Industrial Biocatalysis Consortium (SIBC). Catal Sci Technol 3(1):29–40. doi: 10.1039/c2cy20350b CrossRefGoogle Scholar
  46. Motorin Y, Burhenne J, Teimer R, Koynov K, Willnow S, Weinhold E, Helm M (2011) Expanding the chemical scope of RNA: methyltransferases to site-specific alkynylation of RNA for click labeling. Nucl Acids Res 39(5):1943–1952. doi: 10.1093/nar/gkq825 PubMedCrossRefGoogle Scholar
  47. Müller CA, Akkapurathu B, Winkler T, Staudt S, Hummel W, Gröger H, Schwaneberg U (2013) In vitro double oxidation of n-heptane with direct cofactor regeneration. Adv Synth Catal 355(9):1787–1798. doi: 10.1002/adsc.201300143 CrossRefGoogle Scholar
  48. Muñoz Solano D, Hoyos P, Hernáiz MJ, Alcántara AR, Sánchez-Montero JM (2012) Industrial biotransformations in the synthesis of building blocks leading to enantiopure drugs. Bioresour Technol 115:196–207. doi: 10.1016/j.biortech.2011.11.131 PubMedCrossRefGoogle Scholar
  49. Murthy YVSN, Meah Y, Massey V (1999) Conversion of a flavoprotein reductase to a desaturase by manipulation of the flavin redox potential. J Am Chem Soc 121(22):5344–5345. doi: 10.1021/ja990908t CrossRefGoogle Scholar
  50. Nam DH, Park CB (2012) Visible light-driven NADH regeneration sensitized by proflavine for biocatalysis. ChemBioChem 13(9):1278–1282. doi: 10.1002/cbic.201200115 PubMedCrossRefGoogle Scholar
  51. Ni Y, Li C-X, Zhang J, Shen N-D, Bornscheuer UT, Xu J-H (2011) Efficient reduction of ethyl 2-oxo-4-phenylbutyrate at 620 g L−1 by a bacterial reductase with broad substrate spectrum. Adv Synth Catal 353(8):1213–1217. doi: 10.1002/adsc.201100132 Google Scholar
  52. Ni Y, Hagedoorn PL, Xu JH, Arends IW, Hollmann F (2012a) A biocatalytic hydrogenation of carboxylic acids. Chem Commun 48(99):12056–12058. doi: 10.1039/c2cc36479d CrossRefGoogle Scholar
  53. Ni Y, Pan J, Ma H-M, Li C-X, Zhang J, Zheng G-W, Xu J-H (2012b) Bioreduction of methyl o-chlorobenzoylformate at 500 g L−1 without external cofactors for efficient production of enantiopure clopidogrel intermediate. Tetrahedron Lett 53(35):4715–4717. doi: 10.1016/j.tetlet.2012.06.097 CrossRefGoogle Scholar
  54. Paul CE, Gargiulo S, Opperman DJ, Lavandera I, Gotor-Fernández V, Gotor V, Taglieber A, Arends IWCE, Hollmann F (2013) Mimicking nature: synthetic nicotinamide cofactors for C = C bioreduction using enoate reductases. Org Lett 15(1):180–183. doi: 10.1021/ol303240a PubMedCrossRefGoogle Scholar
  55. Peters W, Willnow S, Duisken M, Kleine H, Macherey T, Duncan KE, Litchfield DW, Lüscher B, Weinhold E (2010) Enzymatic site-specific functionalization of protein methyltransferase substrates with alkynes for click labeling. Angew Chem Int Ed 49(30):5170–5173. doi: 10.1002/anie.201001240 CrossRefGoogle Scholar
  56. Poizat M, Arends IWCE, Hollmann F (2010) On the nature of mutual inactivation between [Cp*Rh(bpy)(H2O)]2+ and enzymes – analysis and potential remedies. J Mol Catal B Enzym 63(3–4):149–156. doi: 10.1016/j.molcatb.2010.01.006 CrossRefGoogle Scholar
  57. Ratzka J, Lauterbach L, Lenz O, Ansorge-Schumacher MB (2012) Stabilisation of the NAD+-reducing soluble [NiFe]-hydrogenase from Ralstonia eutropha H16 through modification with methoxy-poly(ethylene) glycol. J Mol Catal B Enzym 74(3–4):219–223. doi: 10.1016/j.molcatb.2011.10.008 CrossRefGoogle Scholar
  58. Reetz MT (2013) Biocatalysis in organic chemistry and biotechnology: past, present, and future. J Am Chem Soc 135(34):12480–12496. doi: 10.1021/ja405051f PubMedCrossRefGoogle Scholar
  59. Resch V, Fabian WMF, Kroutil W (2010) Deracemisation of mandelic acid to optically pure non-natural l-phenylglycine via a redox-neutral biocatalytic cascade. Adv Synth Catal 352(6):993–997. doi: 10.1002/adsc.200900891 CrossRefGoogle Scholar
  60. Ricca E, Brucher B, Schrittwieser JH (2011) Multi-enzymatic cascade reactions: overview and perspectives. Adv Synth Catal 353(13):2239–2262. doi: 10.1002/adsc.201100256
  61. Richter M (2013) Functional diversity of organic molecule enzyme cofactors. Nat Prod Rep 30(10):1324–1345. doi: 10.1039/c3np70045c PubMedCrossRefGoogle Scholar
  62. Rioz-Martínez A, Bisogno FR, Rodríguez C, de Gonzalo G, Lavandera I, Torres Pazmiño DE, Fraaije MW, Gotor V (2010) Biocatalysed concurrent production of enantioenriched compounds through parallel interconnected kinetic asymmetric transformations. Org Biomol Chem 8(6):1431–1437. doi: 10.1039/b925377g PubMedCrossRefGoogle Scholar
  63. Ryan JD, Fish RH, Clark DS (2008) Engineering cytochrome P450 enzymes for improved activity towards biomimetic 1,4-NADH cofactors. ChemBioChem 9(16):2579–2582. doi: 10.1002/cbic.200800246 PubMedCrossRefGoogle Scholar
  64. Sattler JH, Fuchs M, Tauber K, Mutti FG, Faber K, Pfeffer J, Haas T, Kroutil W (2012) Redox self-sufficient biocatalyst network for the amination of primary alcohols. Angew Chem Int Ed 51:9156–9159. doi: 10.1002/anie.201204683 CrossRefGoogle Scholar
  65. Schrewe M, Ladkau N, Bühler B, Schmid A (2013) Direct terminal alkylamino-functionalization via multistep biocatalysis in one recombinant whole-cell catalyst. Adv Synth Catal 355(9):1693–1697. doi: 10.1002/adsc.201200958 CrossRefGoogle Scholar
  66. Schrittwieser JH, Sattler J, Resch V, Mutti FG, Kroutil W (2011) Recent biocatalytic oxidation–reduction cascades. Curr Opin Chem Biol 15(2):249–256. doi: 10.1016/j.cbpa.2010.11.010 PubMedCentralPubMedCrossRefGoogle Scholar
  67. Shen N-D, Ni Y, Ma H-M, Wang L-J, Li C-X, Zheng G-W, Zhang J, Xu J-H (2012) Efficient synthesis of a chiral precursor for angiotensin-converting enzyme (ACE) inhibitors in high space-time yield by a new reductase without external cofactors. Org Lett 14(8):1982–1985. doi: 10.1021/ol300397d PubMedCrossRefGoogle Scholar
  68. Simon RC, Mutti FG, Kroutil W (2013) Biocatalytic synthesis of enantiopure building blocks for pharmaceuticals. Drug Discov Today: Techn 10(1):e37–e44. doi: 10.1016/j.ddtec.2012.08.002 CrossRefGoogle Scholar
  69. Staudt S, Bornscheuer UT, Menyes U, Hummel W, Gröger H (2013a) Direct biocatalytic one-pot-transformation of cyclohexanol with molecular oxygen into ε-caprolactone. Enzym Microbiol Technol 53(4):288–292. doi: 10.1016/j.enzmictec.2013.03.011 Google Scholar
  70. Staudt S, Burda E, Giese C, Müller CA, Marienhagen J, Schwaneberg U, Hummel W, Drauz K, Gröger H (2013b) Direct oxidation of cycloalkanes to cycloalkanones with oxygen in water. Angew Chem Int Ed 52(8):2359–2363. doi: 10.1002/anie.201204464 CrossRefGoogle Scholar
  71. Stecher H, Tengg M, Ueberbacher BJ, Remler P, Schwab H, Griengl H, Gruber-Khadjawi M (2009) Biocatalytic Friedel–Crafts alkylation using non-natural cofactors. Angew Chem Int Ed 48(50):9546–9548. doi: 10.1002/anie.200905095 CrossRefGoogle Scholar
  72. Struck A-W, Thompson ML, Wong LS, Micklefield J (2012) S-Adenosyl-methionine-dependent methyltransferases: highly versatile enzymes in biocatalysis, biosynthesis and other biotechnological applications. ChemBioChem 13(18):2642–2655. doi: 10.1002/cbic.201200556 PubMedCrossRefGoogle Scholar
  73. Stueckler C, Reiter TC, Baudendistel N, Faber K (2010) Nicotinamide-independent asymmetric bioreduction of C = C-bonds via disproportionation of enones catalyzed by enoate reductases. Tetrahedron 66(3–2):663–667. doi: 10.1016/j.tet.2009.11.065 PubMedCentralPubMedCrossRefGoogle Scholar
  74. Taglieber A, Schulz F, Hollmann F, Rusek M, Reetz MT (2008) Light-driven biocatalytic oxidation and reduction reactions: scope and limitations. ChemBiochem 9(4):565–572. doi: 10.1002/cbic.200700435 Google Scholar
  75. Tauber K, Fuchs M, Sattler JH, Pitzer J, Pressnitz D, Koszelewski D, Faber K, Pfeffer J, Haas T, Kroutil W (2013) Artificial multi-enzyme networks for the asymmetric amination of sec-alcohols. Chem Eur J 19(12):4030–4035. doi: 10.1002/chem.201202666 PubMedCrossRefGoogle Scholar
  76. Tengg M, Stecher H, Remler P, Eiteljörg I, Schwab H, Gruber-Khadjawi M (2012) Molecular characterization of the C-methyltransferase NovO of Streptomyces spheroides, a valuable enzyme for performing Friedel–Crafts alkylation. J Mol Catal B Enzym 84:2–8. doi: 10.1016/j.molcatb.2012.03.016 CrossRefGoogle Scholar
  77. Tong X, El-Zahab B, Zhao X, Liu Y, Wang P (2011) Enzymatic synthesis of l-lactic acid from carbon dioxide and ethanol with an inherent cofactor regeneration cycle. Biotechnol Bioeng 108(2):465–469. doi: 10.1002/bit.22938 PubMedCrossRefGoogle Scholar
  78. Wandrey C, Fiolitakis E, Wichmann U, Kula MR (1984) l-Amino acids from a racemic mixture of α-hydroxy acids. Ann N Y Acad Sci 434:91–94PubMedCrossRefGoogle Scholar
  79. Wang R, Zheng W, Yu H, Deng H, Luo M (2011) Labeling substrates of protein arginine methyltransferase with engineered enzymes and matched S-adenosyl-l-methionine analogues. J Am Chem Soc 133(20):7648–7651. doi: 10.1021/ja2006719 PubMedCentralPubMedCrossRefGoogle Scholar
  80. Wang B, Land H, Berglund P (2013) An efficient single-enzymatic cascade for asymmetric synthesis of chiral amines catalyzed by ω-transaminase. Chem Commun 49(2):161–163. doi: 10.1039/c2cc37232k Google Scholar
  81. Weckbecker A, Gröger H, Hummel W (2010) Regeneration of nicotinamide coenzymes: principles and applications for the synthesis of chiral compounds. 120:195–242. doi: 10.1007/10_2009_55
  82. Wichmann R, Vasic-Racki D (2005) Cofactor regeneration at the lab scale technology transfer in biotechnology: from lab to industry to production. Adv Biochem Eng Biotechnol 92:225–260PubMedGoogle Scholar
  83. Willetts AJ, Knowles CJ, Levitt MS, Roberts SM, Sandey H, Shipston NF (1991) Biotransformation of endo-bicyclo[2.2.1]heptan-2-ols and endo-bicyclo[3.2.0]hept-2-en-6-ol into the corresponding lactones. J Chem Soc, Perkin 1(6):1608–1610. doi: 10.1039/p19910001608 CrossRefGoogle Scholar
  84. Willnow S, Martin M, Lüscher B, Weinhold E (2012) A selenium-based click AdoMet analogue for versatile substrate labeling with wild-type protein methyltransferases. ChemBioChem 13(8):1167–1173. doi: 10.1002/cbic.201100781 Google Scholar
  85. Winkler CK, Clay D, van Heerden E, Faber K (2013) Overcoming co-product inhibition in the nicotinamide independent asymmetric bioreduction of activated C = C-bonds using flavin-dependent ene-reductases. Biotechnol Bioeng 110(12):3085–3092. doi: 10.1002/bit.24981 Google Scholar
  86. Winter JM, Chiou G, Bothwell IR, Xu W, Garg NK, Luo M, Tang Y (2013) Expanding the structural diversity of polyketides by exploring the cofactor tolerance of an inline methyltransferase domain. Org Lett 15(14):3774–3777. doi: 10.1021/ol401723h PubMedCrossRefGoogle Scholar
  87. Wu H, Tian C, Song X, Liu C, Yang D, Jiang Z (2013) Methods for the regeneration of nicotinamide coenzymes. Green Chem 15(7):1773–1789. doi: 10.1039/c3gc37129h Google Scholar
  88. Zhao H, Van Der Donk WA (2003) Regeneration of cofactors for use in biocatalysis. Curr Opin Biotechnol 14(6):583–589PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of Microbiology, Chair of Molecular BiotechnologyTechnische Universität DresdenDresdenGermany
  2. 2.Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands

Personalised recommendations