Applied Microbiology and Biotechnology

, Volume 98, Issue 6, pp 2555–2563 | Cite as

Malate synthase gene AoMls in the nematode-trapping fungus Arthrobotrys oligospora contributes to conidiation, trap formation, and pathogenicity

  • Xinying Zhao
  • Yunchuan Wang
  • Yong Zhao
  • Yan Huang
  • Ke-Qin ZhangEmail author
  • Jinkui YangEmail author
Applied genetics and molecular biotechnology


Malate synthase (Mls), a key enzyme in the glyoxylate cycle, is required for virulence in microbial pathogens. In this study, we identified the AoMls gene from the nematode-trapping fungus Arthobotrys oligospora. The gene contains 4 introns and encodes a polypeptide of 540 amino acids. To characterize the function of AoMls in A. oligospora, we disrupted it by homologous recombination, and the ΔAoMls mutants were confirmed by PCR and Southern blot analyses. The growth rate and colony morphology of the ΔAoMls mutants showed no obvious difference from the wild-type strains on potato dextrose agar (PDA) plate. However, the disruption of gene AoMls led to a significant reduction in conidiation, failure to utilize fatty acids and sodium acetate for growth, and its conidia were unable to germinate on minimal medium supplemented with sodium oleate. In addition, the trap formation was retarded in the ΔAoMls mutants, which only produced immature traps containing one or two rings. Moreover, the nematicidal activity of the ΔAoMls mutants was significantly decreased. Our results suggest that the gene AoMls plays an important role in conidiation, trap formation and pathogenicity of A. oligospora.


Arthrobotrys oligospora Malate synthase (Mls) Gene disruption Mutant Trap formation Nematodes 



We are grateful to Prof. Jianping Xu of the Dept. Biology, McMaster University, for valuable comments and critical discussions. The research described here is jointly supported by the National Basic Research Program of China (2013CB127500), the National Natural Science Foundation of China (approved nos. 31272093 and 31360019), the West Light Foundation of the Chinese Academy of Sciences (to Jinkui Yang), and the China National Tobacco Corporation (110201002023). We also thank the anonymous reviewers for their valuable suggestions.


  1. Åhman J, Johansson T, Olsson M, Punt PJ, van den Hondel CA, Tunlid A (2002) Improving the pathogenicity of a nematode-trapping fungus by genetic engineering of a subtilisin with nematotoxic activity. Appl Environ Microbiol 68:3408–3415PubMedCentralPubMedCrossRefGoogle Scholar
  2. Andersson KM, Meerupati T, Levander F, Friman E, Ahrén D, Tunlid A (2013) Proteome of the nematode-trapping cells of the fungus Monacrosporium haptotylum. Appl Environ Microbiol 79:4993–5004PubMedCentralPubMedCrossRefGoogle Scholar
  3. Asakura M, Okuno T, Takano Y (2006) Multiple contributions of peroxisomal metabolic function to fungal pathogenicity in Colletotrichum lagenarium. Appl Environ Microbiol 72:6345–6354PubMedCentralPubMedCrossRefGoogle Scholar
  4. Chen YL, Gao Y, Zhang KQ, Zou CG (2013) Autophagy is required for trap formation in the nematode-trapping fungus Arthrobotrys oligospora. Env Microbiol Rep 5:511–517CrossRefGoogle Scholar
  5. Christianson TW, Sikorski RS, Dante M, Shero JH, Hieter P (1992) Multifunctional yeast high-copy-number shuttle vectors. Gene 110:119–122PubMedCrossRefGoogle Scholar
  6. Colot HV, Park G, Turner GE, Ringelberg C, Crew CM, Litvinkova L, Weiss RL, Borkovich KA, Dunlap JC (2006) A highthroughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc Natl Acad Sci U S A 103:10352–10357PubMedCentralPubMedCrossRefGoogle Scholar
  7. Dunn MF, Ramírez-Trujillo JA, Hernández-Lucas I (2009) Major roles of isocitrate lyase and malate synthase in bacterial and fungal pathogenesis. Microbiology 155:3166–3175PubMedCrossRefGoogle Scholar
  8. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM, Totowa NJ (eds) The proteomics protocols handbook. Humana Press, New York, pp 571–607CrossRefGoogle Scholar
  9. Hsueh YP, Mahanti P, Schroeder FC, Sternberg PW (2013) Nematode-trapping fungi eavesdrop on nematode pheromones. Curr Biol 23:83–86PubMedCrossRefGoogle Scholar
  10. Jiang DW, Zhu W, Wang YC, Sun C, Zhang KQ, Yang JK (2013) Molecular tools for functional genomics in filamentous fungi: Recent advances and new strategies. Biotechnol Adv 31:1562–1574Google Scholar
  11. Lee SH, Han YK, Yun SH, Lee YW (2009) Roles of the glyoxylate and methylcitrate cycles in sexual development and virulence in the cereal pathogen Gibberella zeae. Eukaryot Cell 8:1155–1164PubMedCentralPubMedCrossRefGoogle Scholar
  12. Li Y, Hyde KD, Jeewon R, Cai L, Vijaykrishna D, Zhang KQ (2005) Phylogenetics and evolution of nematode-trapping fungi (Orbiliales) estimated from nuclear and protein coding genes. Mycologia 97:1034–1046PubMedCrossRefGoogle Scholar
  13. Li G, Zhou X, Xu JR (2012) Genetic control of infection-related development in Magnaporthe oryzae. Curr Opin Microbiol 15:678–684PubMedCrossRefGoogle Scholar
  14. Lorenz MC, Fink GR (2001) The glyoxylate cycle is required for fungal virulence. Nature 412:83–86PubMedCrossRefGoogle Scholar
  15. Nordbring-Hertz B (2004) Morphogenesis in the nematode-trapping fungus Arthrobotrys oligospora-an extensive plasticity of infection structures. Mycologist 18:125–133CrossRefGoogle Scholar
  16. Nordbring-Hertz B, Jansson HB, Tunlid A (2011) Nematophagous Fungi. doi: 10.1002/9780470015902.a0000374.pub3 Google Scholar
  17. Padilla-Guerrero IE, Barelli L, González-Hernández GA, Torres-Guzmán JC, Bidochka MJ (2011) Flexible metabolism in Metarhizium anisopliae and Beauveria bassiana: role of the glyoxylate cycle during insect pathogenesis. Microbiology 157:199–208PubMedCrossRefGoogle Scholar
  18. Park G, Colot HV, Collopy PD, Krystofova S, Crew C, Ringelberg C, Litvinkova L, Altamirano L, Li L, Curilla S, Wang W, Gorrochotegui-Escalante N, Dunlap JC, Borkovich KA (2011) High-throughput production of gene replacement mutants in Neurospora crassa. Methods Mol Biol 722:179–189PubMedCentralPubMedCrossRefGoogle Scholar
  19. Pramer D, Stoll NR (1959) Nemin: a morphogenic substance causing trap formation by predaceous fungi. Science 129:966–967PubMedCrossRefGoogle Scholar
  20. Rauyaree P, Choi W, Fang E, Blackmon B, Dean RA (2001) Genes expressed during early stages of rice infection with the rice blast fungus Magnaporthe grisea. Mol Plant Pathol 2:347–354PubMedCrossRefGoogle Scholar
  21. Solomon PS, Lee RC, Wilson TJ, Oliver RP (2004) Pathogenicity of Stagonospora nodorum requires malate synthase. Mol Microbiol 53:1065–1073PubMedCrossRefGoogle Scholar
  22. Staben C, Jensen B, Singer M, Pollock J, Schechtman M, Kinsey J, Selker E (1989) Use of a bacterial hygromycin B resistance gene as a dominant selectable marker in Neurospora crassa transformation. Fungal Genet Newsl 36:79–81Google Scholar
  23. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCentralPubMedCrossRefGoogle Scholar
  24. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acid Res 25:4876–4882PubMedCentralPubMedCrossRefGoogle Scholar
  25. Tunlid A, Rosen S, Ek B, Rask L (1994) Purification and characterization of an extracellular serine protease from the nematode-trapping fungus Arthrobotrys oligospora. Microbiology 140:1687–1695PubMedCrossRefGoogle Scholar
  26. Tunlid A, Ahman J, Oliver RP (1999) Transformation of the nematode-trapping fungus Arthrobotrys oligospora. FEMS Microbiol Lett 173:111–116PubMedCrossRefGoogle Scholar
  27. Wang ZY, Thornton CR, Kershaw MJ, Debao L, Talbot NJ (2003) The glyoxylate cycle is required for temporal regulation of virulence by the plant pathogenic fungus Magnaporthe grisea. Mol Microbiol 47:1601–1612PubMedCrossRefGoogle Scholar
  28. Xie XQ, Li F, Ying SH, Feng MG (2012) Additive contributions of two manganese-cored superoxide dismutases (MnSODs) to antioxidation, UV tolerance and virulence of Beauveria bassiana. PLoS ONE 7:e30298PubMedCentralPubMedCrossRefGoogle Scholar
  29. Yang JK, Tian BY, Liang LM, Zhang KQ (2007a) Extracellular enzymes and the pathogenesis of nematophagous fungi. Appl Microbiol Biotechnol 75:21–31PubMedCrossRefGoogle Scholar
  30. Yang Y, Yang EC, An ZQ, Liu XZ (2007b) Evolution of nematode-trapping cells of predatory fungi of the Orbiliaceae based on evidence from rRNA-encoding DNA and multiprotein sequences. Proc Natl Acad Sci U S A 104:8379–8384PubMedCentralPubMedCrossRefGoogle Scholar
  31. Yang JK, Wang L, Ji XL, Feng Y, Li XM, Zou CG, Xu JP, Ren Y, Mi QL, Wu JL, Liu SQ, Liu Y, Huang XW, Wang HY, Niu XM, Li J, Liang LM, Luo YL, Ji KF, Zhou W, Yu ZF, Li GH, Liu YJ, Li L, Qiao M, Feng L, Zhang KQ (2011) Genomic and proteomic analyses of the fungus Arthrobotrys oligospora provide insights into nematode-trap formation. PLoS Pathog 7:e1002179PubMedCentralPubMedCrossRefGoogle Scholar
  32. Yang EC, Xu LL, Yang Y, Zhang X, Xiang MC, Wang CS, An ZQ, Liu XZ (2012) Origin and evolution of carnivorism in the Ascomycota (fungi). Proc Natl Acad Sci U S A 109:10960–10965PubMedCentralPubMedCrossRefGoogle Scholar
  33. Yang JK, Yu Y, Juan L, Zhu W, Geng ZY, Jiang DW, Wang YC, Zhang KQ (2013a) Characterization and functional analyses of the chitinase-encoding genes in the nematode-trapping fungus Arthrobotrys oligospora. Arch Microbiol 195:453–462PubMedCrossRefGoogle Scholar
  34. Yang JK, Liang LM, Li J, Zhang KQ (2013b) Nematicidal enzymes from microorganisms and their applications. Appl Microbiol Biotechnol 97:7081–7095PubMedCrossRefGoogle Scholar
  35. Zdobnov EM, Apweiler R (2001) InterProScan-an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17:847–848PubMedCrossRefGoogle Scholar
  36. Zhang L, Yang JK, Niu QH, Zhao XN, Ye FP, Liang LM, Zhang KQ (2008) Investigation on the infection mechanism of the fungus Clonostachys rosea against nematodes using the green fluorescent protein. Appl Microbiol Biotechnol 78:983–990PubMedCrossRefGoogle Scholar
  37. Zhang Y, Li GH, Zhang KQ (2011) A review on the research of nematophagous fungal species. Mycosystema 30:836–845Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of EducationYunnan UniversityKunmingPeople’s Republic of China

Personalised recommendations