Advertisement

Applied Microbiology and Biotechnology

, Volume 98, Issue 4, pp 1497–1506 | Cite as

Transformation of saturated nitrogen-containing heterocyclic compounds by microorganisms

  • Igor A. ParshikovEmail author
  • Eliane O. Silva
  • Niege A. J. C. Furtado
Mini-Review

Abstract

The saturated nitrogen-containing heterocyclic compounds include many drugs and compounds that may be used as synthons for the synthesis of other pharmacologically active substances. The need for new derivatives of saturated nitrogen-containing heterocycles for organic synthesis, biotechnology and the pharmaceutical industry, including optically active derivatives, has increased interest in microbial synthesis. This review provides an overview of microbial technologies that can be valuable to produce new derivatives of saturated nitrogen-containing heterocycles, including hydroxylated derivatives. The chemo-, regio- and enantioselectivity of microbial processes can be indispensable for the synthesis of new compounds. Microbial processes carried out with fungi, including Beauveria bassiana, Cunninghamella verticillata, Penicillium simplicissimum, Aspergillus niger and Saccharomyces cerevisiae, and bacteria, including Pseudomonas sp., Sphingomonas sp. and Rhodococcus erythropolis, biotransform many substrates efficiently. Among the biological activities of saturated nitrogen-containing heterocyclic compounds are antimicrobial, antitumor, antihypertensive and anti-HIV activities; some derivatives are effective for the treatment and prevention of malaria and trypanosomiasis, and others are potent glycosidase inhibitors.

Keywords

Microbial transformation Nitrogen heterocycles Pharmacology Synthesis 

Notes

Acknowledgments

We thank Dr. Vitaly Lashin (ACD/Labs, Moscow) for the consultations in organic chemistry and Dr. John B. Sutherland (U.S. Food and Drug Administration) for the great help with English.

References

  1. Ahn KH, Shin Y-S (1997) Synthesis of 1,4-dideoxy-1,4-imino-D-arabinitol (D-AB-1) through a divergent approach. Bull Korean Chem Soc 18(11):1192–1195Google Scholar
  2. Archelas A, Furstoss R, Srairi D, Maurey G (1986) Transformations microbiologiques, 5. Hydroxylation microbiologique de lactames, d'amides et d'imides monocycliques par le champignon Beauveria sulfurescens. Bull Soc Chim Fr 2:234–238Google Scholar
  3. Archelas A, Furneron ID, Furstoss R (1988) Microbial transformations 11. Regioselective hydroxylation of β-lactams by the fungus Beauveria sulfurescens. Tetrahedron Lett 29(50):6611–6613. doi: 10.1016/S0040-4039(00)82410-7 CrossRefGoogle Scholar
  4. Aurrecoechea JM, Bustos F, López B, Saornil C, Suero R (2009) A new entry into 3-hydroxypyrrolidine derivatives from protected α- or β-amino esters. Arkivoc 11:94–104CrossRefGoogle Scholar
  5. Baker P (1987) Biotransformations. Lab Pract 36(7):46–47Google Scholar
  6. Barreiros L, Fernandes A, Ferreira ACS, Pereira H, Bastos MMSM, Manaia CM, Nunes OC (2008) New insights into a bacterial metabolic and detoxifying association responsible for the mineralization of the thiocarbamate herbicide molinate. Microbiology 154:1038–1046. doi: 10.1099/mic.0.2007/015297-0 PubMedCrossRefGoogle Scholar
  7. Bertrand L, Kremsner PG (2002) Clindamycin as an antimalarial drug: review of clinical trials. Antimicrob Agents Chemother 46(8):2315–2320. doi: 10.1128/AAC.46.8.2315-2320.2002 CrossRefGoogle Scholar
  8. Bot C, Hall BS, Bashir N, Taylor MC, Helsby NA, Wilkinson SR (2010) Trypanocidal activity of aziridinyl nitrobenzamide prodrugs. Antimicrob Agents Chemother 54(10):4246–4252. doi: 10.1128/AAC.00800-10 PubMedCrossRefPubMedCentralGoogle Scholar
  9. Chang D, Feiten H-J, Engesser KH, Van Beilen JB, Witholt B, Li Z (2002) Practical syntheses of N-substituted 3-hydroxyazetidines and 4-hydroxypiperidines by hydroxylation with Sphingomonas sp. HXN-200. Org Lett 4(11):1859–1862. doi: 10.1021/ol025829s PubMedCrossRefGoogle Scholar
  10. Chawla R, Singh AK, Yadav LDS (2013) Organocatalysis in synthesis and reactions of epoxides and aziridines. RSC Advances 3(29):11385–11403. doi: 10.1039/C3RA00175J CrossRefGoogle Scholar
  11. Chen P, Gao M, Wang DX, Zhao L, Wang MX (2012) Enantioselective biotransformations of racemic and meso pyrrolidine-2,5-dicarboxamides and their application in organic synthesis. J Org Chem 77:4063–4072. doi: 10.1021/jo300412j PubMedCrossRefGoogle Scholar
  12. Dexian W, Meixiang W (2010) Biotransformations of three-membered (hetero) cyclic nitriles and their applications in organic synthesis. Progress in Chemistry 22(7):1397–1402Google Scholar
  13. D'hooghe M, Kenis S, Vervisch K, Lategan C, Smith PJ, Chibale K, De Kimpe N (2011) Synthesis of 2-(aminomethyl)aziridines and their microwave-assisted ring opening to 1,2,3-triaminopropanes as novel antimalarial pharmacophores. Eur J Med Chem 46(2):579–587. doi: 10.1016/j.ejmech.2010.11.037 PubMedCrossRefGoogle Scholar
  14. Diethelm S, Carreira EM (2013) Total synthesis of (±)-gelsemoxonine. J Am Chem Soc 135(23):8500–8503. doi: 10.1021/ja208617c PubMedCrossRefGoogle Scholar
  15. Duran N, De Conti R, Rodrigues JAR (2000) Biotransformations by microorganisms, organisms and enzymes: state of art. Bol Soc Chil Quim 45(1):109–121Google Scholar
  16. Faber K (2004) Biotransformations in organic chemistry. Springer, HeidelbergCrossRefGoogle Scholar
  17. Fattorusso E, Taglialatela-Scafati O (2009) Marine antimalarials. Mar Drugs 7:130–152. doi: 10.3390/md7020130 PubMedCrossRefPubMedCentralGoogle Scholar
  18. Feula A, Male L, Fossey JS (2010) Diastereoselective preparation of azetidines and pyrrolidines. Org Lett 12(21):5044–5047. doi: 10.1021/ol102215e PubMedCrossRefGoogle Scholar
  19. Fürmeier S, Metzger JO (2003) Fat-derived aziridines and their N-substituted derivatives: biologically active compounds based on renewable raw materials. Eur J Org Chem 4:649–659. doi: 10.1002/ejoc.200390105 CrossRefGoogle Scholar
  20. Georg GI, Guan X (1992) Asymmetric synthesis of α-alkylated α-amino acids: azocane-2-carboxylic acids. Tetrahedron Lett 33:17–20. doi: 10.1016/S0040-4039(00)77662-3 CrossRefGoogle Scholar
  21. Ghorai MK, Das K, Kumar A (2007) A convenient synthetic route to enantiopure N-tosylazetidines from α-amino acids. Tetrahedron Lett 48:2471–2475. doi: 10.1016/j.tetlet.2007.02.033 CrossRefGoogle Scholar
  22. Grishina GV, Veselov IS, Nelyubina YV, Surovaya AN, Zefirov NS (2011) Optically pure trans-1-benzyl-4-aminopiperidin-3-ols. Synthesis and absolute configuration. Arkivoc 10:107–117. doi: 10.3998/ark.5550190.0012.a09 CrossRefGoogle Scholar
  23. Gross C, Felsheim R, Wackett LP (2008) Genes and enzymes of azetidine-2-carboxylate metabolism detoxification and assimilation of an antibiotic. J Bacteriol 190(14):4859–4864. doi: 10.1128/JB.02022-07 PubMedCrossRefPubMedCentralGoogle Scholar
  24. Hassner A (2009) Adventures in stereochemistry and cycloadditions. Bull Israel Chem Soc 24:20–25Google Scholar
  25. Hocart SJ, Liu H, Deng H, De D, Krogstad FM, Krogstad DJ (2011) 4-Aminoquinolines active against chloroquine-resistant Plasmodium falciparum: basis of antiparasite activity and quantitative structure–activity relationship analyses. Antimicrob Agents Chemother 55(5):2233–2244. doi: 10.1128/AAC.00675-10 PubMedCrossRefPubMedCentralGoogle Scholar
  26. Hodgson DM, Fleming MJ, Xu Z, Lin C, Stanway SJ (2006) 3-Hydroxypyrrolidines from epoxysulfonamides and dimethylsulfoxonium methylide. Chem Commun 30:3226–3228. doi: 10.1039/B606583J CrossRefGoogle Scholar
  27. Hüttel W, Hoffmeister D (2010) Fungal biotransformations in pharmaceutical sciences. The Mycota 10(3):293–317. doi: 10.1007/978-3-642-11458-8_14 Google Scholar
  28. Johnson RA, Herr ME, Murray HC, Fonken GS (1968a) The microbiological oxygenation of azacycloalkanes. Structural determinations leading to transannular reactions. J Org Chem 33(8):3187–3195. doi: 10.1021/jo01272a035 PubMedCrossRefGoogle Scholar
  29. Johnson RA, Herr ME, Murray HC, Reineke LM, Fonken GS (1968b) The microbiological oxygenation of some azabicycloalkanes. J Org Chem 33(8):3195–3201. doi: 10.1021/jo01272a036 PubMedCrossRefGoogle Scholar
  30. Johnson RA, Murray HC, Reineke LM, Fonken GS (1969) Stereochemistry of microbiological hydroxylation. II. Oxygenation of 1-benzoylalkylpiperidines. J Org Chem 34(8):2279–2284. doi: 10.1021/jo01260a009 CrossRefGoogle Scholar
  31. Johnson RA, Herr ME, Murray HC, Chidester CG, Han F (1992) Selective oxygenation of adamantanes and other substrates by Beauveria sulfurescens. J Org Chem 57(26):7209–7212. doi: 10.1021/jo00052a039 CrossRefGoogle Scholar
  32. Keifer PA, Nagel DL, Cromwell NH (1988) Stereochemistry and bonding in N-substituted-2-phenyl-3-cyanoaziridines. J Heterocycl Chem 25(2):353–359. doi: 10.1002/jhet.5570250201 CrossRefGoogle Scholar
  33. Leng DH, DeX W, Pan J, Huang ZT, Wang MX (2009) Highly efficient and enantioselective biotransformations of racemic azetidine-2-carbonitriles and their synthetic applications. J Org Chem 74:6077–6082. doi: 10.1021/jo9011656 PubMedCrossRefGoogle Scholar
  34. Li Z, Feiten HJ, Chang D, Duetz WA, Van Beilen JB, Witholt B (2001) Preparation of (R)- and (S)-N-protected 3-hydroxypyrrolidines by hydroxylation with Sphingomonas sp. HXN-200, a highly active, regio- and stereoselective, and easy to handle biocatalyst. J Org Chem 66(25):8424–8430. doi: 10.1021/jo015826d PubMedCrossRefGoogle Scholar
  35. McKay VA, Thompson SJ, Tran PM, Goodall KJ, Brimble MA, Barker D (2010) Stereoselective synthesis of 4-substituted 4-hydroxypiperidines via epoxidation–ring opening of 4-methylenepiperidines. Synlett 17:2631–2635. doi: 10.1055/s-0030-1258778 Google Scholar
  36. Mendoza A, Perez-Silanes S, Quiliano M, Pabón A, Galiano S, Gonzalez G, Garavito G, Zimic M, Vaisberg A, Aldana I, Monge A, Deharo E (2011) Aryl piperazine and pyrrolidine as antimalarial agents. Synthesis and investigation of structure–activity relationships. Exp Parasitol 128(2):97–103. doi: 10.1016/j.exppara.2011.02.025 PubMedCrossRefGoogle Scholar
  37. Mihovilovic MD, Spina M, Stanetty P (2005) Synthesis and yeast - mediated bioreduction of α-keto-β-lactams bearing a functionalized and rigid side chain. Arkivoc 5:33–44. doi: 10.3998/ark.5550190.0006.504 Google Scholar
  38. Modyanova LV, Duduchava MR, Piskunkova NF, Grishina GV, Terentyev PB, Parshikov IA (1999) Microbial transformations of piperidine and pyridine derivatives. Chem Heterocycl Compd 33(5):580–586. doi: 10.1007/BF02324642 CrossRefGoogle Scholar
  39. Osorio-Lozada A, Tovar-Miranda R, Olivo HF (2008) Biotransformation of N-piperidinylacetophenone with Beauveria bassiana ATCC-7159. J Mol Catal B Enzym 55(1–2):30–36. doi: 10.1016/j.molcatb.2007.12.026 CrossRefGoogle Scholar
  40. Pacorel B, Leung SC, Stachulski AV, Davies J, Vivas L, Lander H, Ward SA, Kaiser M, Brun R, O'Neill PM (2010) Modular synthesis and in vitro and in vivo antimalarial assessment of C-10 pyrrole Mannich base derivatives of artemisinin. J Med Chem 53:633–640. doi: 10.1021/jm901216v PubMedCrossRefGoogle Scholar
  41. Parshikov IA, Sutherland JB (2012) Microbial transformations of antimicrobial quinolones and related drugs. J Ind Microbiol Biotechnol 39(12):1731–1740. doi: 10.1007/s10295-012-1194-x PubMedCrossRefGoogle Scholar
  42. Parshikov IA, Modyanova LV, Dovgilevich EV, Terentyev PB, Vorobyeva LI, Grishina GV (1992) Microbiological transformation of nitrogen-containing heterocyclic compounds. 3. Microbiological synthesis of hydroxy derivatives of 1-benzoylpiperidine and 1-benzoylpyrrolidine. Chem Heterocycl Compnds 28(2):159–162. doi: 10.1007/BF00473936 CrossRefGoogle Scholar
  43. Parshikov IA, Netrusov AI, Sutherland JB (2012a) Microbial transformation of azaarenes and potential uses in pharmaceutical synthesis. Appl Microbiol Biotechnol 95(4):871–879. doi: 10.1007/s00253-012-4220-z PubMedCrossRefGoogle Scholar
  44. Parshikov IA, Netrusov AI, Sutherland JB (2012b) Microbial transformation of antimalarial terpenoids. Biotechnol Adv 30(6):1516–1523. doi: 10.1016/j.biotechadv.2012.03.010 PubMedCrossRefGoogle Scholar
  45. Petersen M, Kiener A (1999) Biocatalysis: preparation and functionalization of N-heterocycles. Green Chem 1:99–106. doi: 10.1039/A809538H CrossRefGoogle Scholar
  46. Radic Z, Sit RK, Kovarik Z, Berend Z, Garcia E, Zhang L, Amitai G, Green C, Radic B, Fokin VV, Sharpless KB, Taylor P (2012) Refinement of structural leads for centrally acting oxime reactivators of phosphylated cholinesterases. J Biol Chem 287(15):11798–11809. doi: 10.1074/jbc.M111.333732 PubMedCrossRefGoogle Scholar
  47. Richardson DW, Wyso EM (1960) Human pharmacology of guanethidine. Ann N Y Acad Sci 88:944–955. doi: 10.1111/j.1749-6632.1960.tb20086.x PubMedCrossRefGoogle Scholar
  48. Rios R, Ibrahem I, Vesely J, Sundén H, Córdova A (2007) Organocatalytic asymmetric 5-hydroxypyrrolidine synthesis: a highly enantioselective route to 3-substituted proline derivatives. Tetrahedron Lett 48:8695–8699. doi: 10.1016/j.tetlet.2007.10.028 CrossRefGoogle Scholar
  49. Romanova NN, Tallo TG, Bundel YG (1995) Synthesis and stereochemistry of chiral azetidin-2-ones and azetidine-2-thiones. 3. Stereodirected construction of the β-lactam fragment of the thienamycin molecule. Chem Heterocycl Compd 31(2):223–226. doi: 10.1007/BF01169684 CrossRefGoogle Scholar
  50. Seebacher W, Weis R (2011) Novel antimalarial 3-azabicyclo[3.2.2]nonane derivatives. European Patent N 2301627A1, 30 Mar 2011.Google Scholar
  51. Sharma R, Samadhiya P, Srivastava SD, Srivastava SK (2011) Synthesis and biological activity of 2-oxo-azetidine derivatives of phenothiazine. Org Commun 4(2):42–51Google Scholar
  52. Shih TL, Yang RY, Li ST, Chiang CF, Lin CH (2007) Expeditious synthesis of tri- and tetrahydroxyazepanes from D-(-)-quinic acid as potent glycosidase inhibitors. J Org Chem 72:4258–4261. doi: 10.1021/jo070058x PubMedCrossRefGoogle Scholar
  53. Shih TL, Liang MT, Wu KD, Lin CH (2011) Synthesis of polyhydroxy 7- and N-alkyl-azepanes as potent glycosidase inhibitors. Carbohydr Res 346(2):183–190. doi: 10.1016/j.carres.2010.11.014 PubMedCrossRefGoogle Scholar
  54. Singh P, Sachdeva S, Raj R, Kumar V, Mahajan MP, Nasser S, Vivas L, Gut J, Rosenthal PJ, Feng TS, Chibale K (2011) Antiplasmodial and cytotoxicity evaluation of 3-functionalized 2-azetidinone derivatives. Bioorg Med Chem Lett 21(15):4561–4563. doi: 10.1016/j.bmcl.2011.05.119 PubMedCrossRefGoogle Scholar
  55. Singh P, Singh P, Kumar M, Gut J, Rosenthal PJ, Kumar K, Kumar V, Mahajan MP, Bisetty K (2012) Synthesis, docking and in vitro antimalarial evaluation of bifunctional hybrids derived from β-lactams and 7-chloroquinoline using click chemistry. Bioorg Med Chem Lett 22(1):57–61. doi: 10.1016/j.bmcl.2011.11.082 PubMedCrossRefGoogle Scholar
  56. Srairi D, Maurey G (1987) Hydroxylations microbiologiques de pyrrolidinones-2. Bull Soc Chim Fr 2:297–301Google Scholar
  57. Sukul P, Spiteller M (2007) Fluoroquinolone antibiotics in the environment. Rev Environ Contam Toxicol 191:131–162. doi: 10.1007/978-0-387-69163-3_5 PubMedGoogle Scholar
  58. Sun H, Millar KM, Yang J, Abboud K, Horenstein BA (2000) A new asymmetric route to substituted piperidines: synthesis of N-alkyl-3,4-dihydroxy-5-alkylpiperidines. Tetrahedron Lett 41(16):2801–2804. doi: 10.1016/S0040-4039(00)00267-7 CrossRefGoogle Scholar
  59. Taniguchi T, Ogasawara K (2000) A diastereocontrolled synthesis of (+)-febrifugine: a potent antimalarial piperidine alkaloid. Org Lett 2(20):3193–3195. doi: 10.1021/ol006384f PubMedCrossRefGoogle Scholar
  60. Terent'ev PB, Parshikov IA, Grishina GV, Piskunkova NF, Chumakov TI, Bulakhov GA (1997) Hydroxylation of the double bond in 1-benzyl-3-methyl-Δ3-piperidine by mycelium fungi. Chem Heterocycl Compd 33(5):619–620. doi: 10.1007/BF02291950 CrossRefGoogle Scholar
  61. Terent'ev PB, Zilberstein TM, Borisenko AA, Shmorgunov VA, Piskunkova NF, Grishina GV (2003) Transformation of 1,2,5,6-tetrahydropyridines with mycellar fungi. Chem Heterocycl Compd 39(7):885–894. doi: 10.1023/A:1026142220384 CrossRefGoogle Scholar
  62. Thibodeaux CJ, Chang WC, Liu HW (2012) Enzymatic chemistry of cyclopropane, epoxide, and aziridine biosynthesis. Chem Rev 112(3):1681–1709. doi: 10.1021/cr200073d PubMedCrossRefPubMedCentralGoogle Scholar
  63. Vickers S, Polsky SL (2000) The biotransformation of nitrogen containing xenobiotics to lactams. Curr Drug Metab 1(4):357–389. doi: 10.2174/1389200003338929 PubMedCrossRefGoogle Scholar
  64. Walsh JJ, Coughlan D, Heneghan N, Gaynora C, Bell A (2007) A novel artemisinin–quinine hybrid with potent antimalarial activity. Bioorg Med Chem Lett 17:3599–3602. doi: 10.1016/j.bmcl.2007.04.054 PubMedCrossRefGoogle Scholar
  65. Weintraub PM, Sabol JS, Kane JM, Borcherding DR (2003) Recent advances in the synthesis of piperidones and piperidines. Tetrahedron 59(17):2953–2989. doi: 10.1016/S0040-4020(03)00295-3 CrossRefGoogle Scholar
  66. Wright AD, Goclik E, König GM, Kaminsky R (2002) Lepadins D-F: antiplasmodial and antitrypanosomal decahydroquinoline derivatives from the tropical marine tunicate Didemnum sp. J Med Chem 45(14):3067–3072. doi: 10.1021/jm0110892 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Igor A. Parshikov
    • 1
    Email author
  • Eliane O. Silva
    • 2
  • Niege A. J. C. Furtado
    • 2
  1. 1.Institute of Applied MechanicsRussian Academy of SciencesMoscowRussia
  2. 2.Faculdade de Ciências Farmacêuticas de Ribeirão PretoUniversidade de São PauloSão PauloBrazil

Personalised recommendations