Applied Microbiology and Biotechnology

, Volume 98, Issue 3, pp 1031–1042 | Cite as

Proteins improving recombinant antibody production in mammalian cells



Mammalian cells have been successfully used for the industrial manufacture of antibodies due to their ability to synthesize antibodies correctly. Nascent polypeptides must be subjected to protein folding and assembly in the ER and the Golgi to be secreted as mature proteins. If these reactions do not proceed appropriately, unfolded or misfolded proteins are degraded by the ER-associated degradation (ERAD) pathway. The accumulation of unfolded proteins or intracellular antibody crystals accompanied by this failure triggers the unfolded protein response (UPR), which can considerably attenuate the levels of translation, folding, assembly, and secretion, resulting in reduction of antibody productivity. Accumulating studies by omics-based analysis of recombinant mammalian cells suggest that not only protein secretion processes including protein folding and assembly but also translation are likely to be the rate-limiting factors for increasing antibody production. Here, this review describes the mechanism of antibody folding and assembly and recent advantages which could improve recombinant antibody production in mammalian cells by utilizing proteins such as ER chaperones or UPR-related proteins.


Cell engineering UPR ER chaperone Folding Antibody production 


  1. Aggarwal S (2011) What's fueling the biotech engine—2010 to 2011. Nat Biotechnol 29(12):1083–1089PubMedGoogle Scholar
  2. Alete DE, Racher AJ, Birch JR, Stansfield SH, James DC, Smales CM (2005) Proteomic analysis of enriched microsomal fractions from GS-NS0 murine myeloma cells with varying secreted recombinant monoclonal antibody productivities. Proteomics 5(18):4689–4704PubMedGoogle Scholar
  3. Ameri K, Harris AL (2008) Activating transcription factor 4. Int J Biochem Cell Biol 40(1):14–21PubMedGoogle Scholar
  4. Appenzeller-Herzog C, Riemer J, Zito E, Chin KT, Ron D, Spiess M, Ellgaard L (2010) Disulfide production by Ero1α-PDI relay is rapid and effectively regulated. EMBO J 29:3318–3329PubMedCentralPubMedGoogle Scholar
  5. Bahr SM, Borgschulte T, Kayser KJ, Lin N (2009) Using microarray technology to select housekeeping genes in Chinese hamster ovary cells. Biotechnol Bioeng 104(5):1041–1046PubMedGoogle Scholar
  6. Baik JY, Lee MS, An SR, Yoon SK, Joo EJ, Kim YH, Park HW, Lee GM (2006) Initial transcriptome and proteome analyses of low culture temperature-induced expression in CHO cells producing erythropoietin. Biotechnol Bioeng 93(2):361–371PubMedGoogle Scholar
  7. Barnes LM, Dickson AJ (2006) Mammalian cell factories for efficient and stable protein expression. Curr Opin Biotechnol 17(4):381–386PubMedGoogle Scholar
  8. Baycin-Hizal D, Tabb DL, Chaerkady R, Chen L, Lewis NE, Nagarajan H, Sarkaria V, Kumar A, Wolozny D, Colao J, Jacobson E, Tian Y, O'Meally RN, Krag SS, Cole RN, Palsson BO, Zhang H, Betenbaugh M (2012) Proteomic analysis of Chinese hamster ovary cells. J Proteome Res 11(11):5265–5276PubMedCentralPubMedGoogle Scholar
  9. Becker E, Florin L, Pfizenmaier K, Kaufmann H (2008) An XBP-1 dependent bottle-neck in production of IgG subtype antibodies in chemically defined serum-free Chinese hamster ovary (CHO) fed-batch processes. J Biotechnol 135(2):217–223PubMedGoogle Scholar
  10. Becker E, Florin L, Pfizenmaier K, Kaufmann H (2010) Evaluation of a combinatorial cell engineering approach to overcome apoptotic effects in XBP-1(s) expressing cells. J Biotechnol 146(4):198–206PubMedGoogle Scholar
  11. Bell AC, West AG, Felsenfeld G (2001) Insulators and boundaries: versatile regulatory elements in the eukaryotic genome. Science 291(5503):447–507PubMedGoogle Scholar
  12. Bergman LW, Kuehl WM (1979) Formation of intermolecular disulfide bonds on nascent immunoglobulin polypeptides. J Biol Chem 254(13):5690–5694PubMedGoogle Scholar
  13. Bhoskar P, Belongia B, Smith R, Yoon S, Carter T, Xu J (2013) Free light chain content in culture media reflects recombinant monoclonal antibody productivity and quality. Biotechnol Prog. doi:10.1002/btpr.1767 Google Scholar
  14. Birch JR, Racher AJ (2006) Antibody production. Adv Drug Deliv Rev 58(5–6):671–685PubMedGoogle Scholar
  15. Bole DG, Hendershot LM, Kearney JF (1986) Posttranslational association of immunoglobulin heavy chain binding protein with nascent heavy chains in nonsecreting and secreting hybridomas. J Cell Biol 102(5):1558–1566PubMedGoogle Scholar
  16. Borth N, Mattanovich D, Kunert R, Katinger H (2005) Effect of increased expression of protein disulfide isomerase and heavy chain binding protein on antibody secretion in a recombinant CHO cell line. Biotechnol Prog 21(1):106–111PubMedGoogle Scholar
  17. Brodsky JL (2012) Cleaning up: ER-associated degradation to the rescue. Cell 151(6):1163–1167PubMedCentralPubMedGoogle Scholar
  18. Brodsky JL, Skach WR (2011) Protein folding and quality control in the endoplasmic reticulum: recent lessons from yeast and mammalian cell systems. Curr Opin Cell Biol 23(4):464–475PubMedCentralPubMedGoogle Scholar
  19. Brush MH, Weiser DC, Shenolikar S (2003) Growth arrest and DNA damage-inducible protein GADD34 targets protein phosphatase 1 alpha to the endoplasmic reticulum and promotes dephosphorylation of the alpha subunit of eukaryotic translation initiation factor 2. Mol Cell Biol 23(4):1292–1303PubMedCentralPubMedGoogle Scholar
  20. Buss NA, Henderson SJ, McFarlane M, Shenton JM, de Haan L (2012) Monoclonal antibody therapeutics: history and future. Curr Opin Pharmacol 12(5):615–622. doi:10.1016/j.coph.2012.08.001 PubMedGoogle Scholar
  21. Cain K, Peters S, Hailu H, Sweeney B, Stephens P, Heads J, Sarkar K, Ventom A, Page C, Dickson A (2013) A CHO cell line engineered to express XBP1 and ERO1-Lα has increased levels of transient protein expression. Biotechnol Prog 29(3):697–706PubMedGoogle Scholar
  22. Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, Clark SG, Ron D (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415(6867):92–96PubMedGoogle Scholar
  23. Carlage T, Hincapie M, Zang L, Lyubarskaya Y, Madden H, Mhatre R, Hancock WS (2009) Proteomic profiling of a high-producing Chinese hamster ovary cell culture. Anal Chem 81(17):7357–7362PubMedGoogle Scholar
  24. Casey JR, Grinstein S, Orlowski J (2010) Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol 11(1):50–61PubMedGoogle Scholar
  25. Cenci S, Sitia R (2007) Managing and exploiting stress in the antibody factory. FEBS Lett 581(19):3652–3657PubMedGoogle Scholar
  26. Chakrabarti A, Chen AW, Varner JD (2011) A review of the mammalian unfolded protein response. Biotechnol Bioeng 108(12):2777–2793PubMedCentralPubMedGoogle Scholar
  27. Chiang GG, Sisk WP (2005) Bcl-x(L) mediates increased production of humanized monoclonal antibodies in Chinese hamster ovary cells. Biotechnol Bioeng 91(7):779–792PubMedGoogle Scholar
  28. Chung JY, Lim SW, Hong YJ, Hwang SO, Lee GM (2004) Effect of doxycycline-regulated calnexin and calreticulin expression on specific thrombopoietin productivity of recombinant Chinese hamster ovary cells. Biotechnol Bioeng 85(5):539–546PubMedGoogle Scholar
  29. Clarke C, Doolan P, Barron N, Meleady P, O'Sullivan F, Gammell P, Melville M, Leonard M, Clynes M (2011) Large scale microarray profiling and coexpression network analysis of CHO cells identifies transcriptional modules associated with growth and productivity. J Biotechnol 155(3):350–359PubMedGoogle Scholar
  30. Cost GJ, Freyvert Y, Vafiadis A, Santiago Y, Miller JC, Rebar E, Collingwood TN, Snowden A, Gregory PD (2010) BAK and BAX deletion using zinc-finger nucleases yields apoptosis-resistant CHO cells. Biotechnol Bioeng 105(2):330–340PubMedGoogle Scholar
  31. Cudna RE, Dickson AJ (2006) Engineering responsiveness to cell culture stresses: growth arrest and DNA damage gene 153 (GADD153) and the unfolded protein response (UPR) in NS0 myeloma cells. Biotechnol Bioeng 94(3):514–521PubMedGoogle Scholar
  32. Datta P, Linhardt RJ, Sharfstein ST (2013) An 'omics approach towards CHO cell engineering. Biotechnol Bioeng 110(5):1255–1271PubMedGoogle Scholar
  33. Davis R, Schooley K, Rasmussen B, Thomas J, Reddy P (2000) Effect of PDI overexpression on recombinant protein secretion in CHO cells. Biotechnol Prog 16(5):736–743PubMedGoogle Scholar
  34. Derouazi M, Martinet D, Besuchet Schmutz N, Flaction R, Wicht M, Bertschinger M, Hacker DL, Beckmann JS, Wurm FM (2006) Genetic characterization of CHO production host DG44 and derivative recombinant cell lines. Biochem Biophys Res Commun 340(4):1069–1077PubMedGoogle Scholar
  35. Dietmair S, Hodson MP, Quek LE, Timmins NE, Gray P, Nielsen LK (2012) A multi-omics analysis of recombinant protein production in Hek293 cells. PLoS One 7(8):e43394PubMedCentralPubMedGoogle Scholar
  36. Dinnis DM, Stansfield SH, Schlatter S, Smales CM, Alete D, Birch JR, Racher AJ, Marshall CT, Nielsen LK, James DC (2006) Functional proteomic analysis of GS-NS0 murine myeloma cell lines with varying recombinant monoclonal antibody production rate. Biotechnol Bioeng 94(5):830–841PubMedGoogle Scholar
  37. Doolan P, Meleady P, Barron N, Henry M, Gallagher R, Gammell P, Melville M, Sinacore M, McCarthy K, Leonard M, Charlebois T, Clynes M (2010) Microarray and proteomics expression profiling identifies several candidates, including the valosin-containing protein (VCP), involved in regulating high cellular growth rate in production CHO cell lines. Biotechnol Bioeng 106(1):42–56PubMedGoogle Scholar
  38. Dorner AJ, Krane MG, Kaufman RJ (1988) Reduction of endogenous GRP78 levels improves secretion of a heterologous protein in CHO cells. Mol Cell Biol 8(10):4063–4070PubMedCentralPubMedGoogle Scholar
  39. Dorner AJ, Wasley LC, Kaufman RJ (1992) Overexpression of GRP78 mitigates stress induction of glucose regulated proteins and blocks secretion of selective proteins in Chinese hamster ovary cells. EMBO J 11(4):1563–1571PubMedCentralPubMedGoogle Scholar
  40. Du Z, Treiber D, McCoy RE, Miller AK, Han M, He F, Domnitz S, Heath C, Reddy P (2013) Non-invasive UPR monitoring system and its applications in CHO production cultures. Biotechnol Bioeng 110(8):2184–2194PubMedGoogle Scholar
  41. Dudek J, Benedix J, Cappel S, Greiner M, Jalal C, Müller L, Zimmermann R (2009) Functions and pathologies of BiP and its interaction partners. Cell Mol Life Sci 66(9):1556–1569PubMedGoogle Scholar
  42. Elkabetz Y, Argon Y, Bar-Nun S (2005) Cysteines in CH1 underlie retention of unassembled Ig heavy chains. J Biol Chem 280(15):14402–14412PubMedGoogle Scholar
  43. Ellgaard L, Helenius A (2003) Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 4(3):181–191PubMedGoogle Scholar
  44. Ellgaard L, Ruddock LW (2005) The human protein disulphide isomerase family: substrate interactions and functional properties. EMBO Rep 6(1):28–32PubMedCentralPubMedGoogle Scholar
  45. Feige MJ, Walter S, Buchner J (2004) Folding mechanism of the CH2 antibody domain. J Mol Biol 344(1):107–118PubMedGoogle Scholar
  46. Feige MJ, Hagn F, Esser J, Kessler H, Buchner J (2007) Influence of the internal disulfide bridge on the folding pathway of the CL antibody domain. J Mol Biol 365(4):1232–1244PubMedGoogle Scholar
  47. Feige MJ, Groscurth S, Marcinowski M, Shimizu Y, Kessler H, Hendershot LM, Buchner J (2009) An unfolded CH1 domain controls the assembly and secretion of IgG antibodies. Mol Cell 34(5):569–579PubMedCentralPubMedGoogle Scholar
  48. Feige MJ, Hendershot LM, Buchner J (2010) How antibodies fold. Trends Biochem Sci 35(4):189–198PubMedGoogle Scholar
  49. Fussenegger M, Mazur X, Bailey JE (1997) A novel cytostatic process enhances the productivity of Chinese hamster ovary cells. Biotechnol Bioeng 55(6):927–939PubMedGoogle Scholar
  50. Fussenegger M, Fassnacht D, Schwartz R, Zanghi JA, Graf M, Bailey JE, Pörtner R (2000) Regulated overexpression of the survival factor bcl-2 in CHO cells increases viable cell density in batch culture and decreases DNA release in extended fixed-bed cultivation. Cytotechnology 32(1):45–61PubMedCentralPubMedGoogle Scholar
  51. Galbete JL, Buceta M, Mermod N (2009) MAR elements regulate the probability of epigenetic switching between active and inactive gene expression. Mol BioSyst 5(2):143–150PubMedGoogle Scholar
  52. Gass JN, Gifford NM, Brewer JW (2002) Activation of an unfolded protein response during differentiation of antibody-secreting B cells. J Biol Chem 277(50):49047–49054PubMedGoogle Scholar
  53. Gass JN, Gunn KE, Sriburi R, Brewer JW (2004) Stressed-out B cells? Plasma-cell differentiation and the unfolded protein response. Trends Immunol 25(1):17–24PubMedGoogle Scholar
  54. Girod PA, Nguyen DQ, Calabrese D, Puttini S, Grandjean M, Martinet D, Regamey A, Saugy D, Beckmann JS, Bucher P, Mermod N (2007) Genome-wide prediction of matrix attachment regions that increase gene expression in mammalian cells. Nat Methods 4(9):747–753PubMedGoogle Scholar
  55. Goto Y, Hamaguchi K (1982a) Unfolding and refolding of the constant fragment of the immunoglobulin light chain. J Mol Biol 156(4):891–910PubMedGoogle Scholar
  56. Goto Y, Hamaguchi K (1982b) Unfolding and refolding of the reduced constant fragment of the immunoglobulin light chain. Kinetic role of the intrachain disulfide bond. J Mol Biol 156(4):911–926PubMedGoogle Scholar
  57. Haas IG, Wabl M (1983) Immunoglobulin heavy chain binding protein. Nature 306(5941):387–389PubMedGoogle Scholar
  58. Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397(6716):271–274PubMedGoogle Scholar
  59. Harraghy N, Gaussin A, Mermod N (2008) Sustained transgene expression using MAR elements. Curr Gene Ther 8(5):353–366PubMedGoogle Scholar
  60. Hasegawa H (2013) Aggregates, crystals, gels, and amyloids: intracellular and extracellular phenotypes at the crossroads of immunoglobulin physicochemical property and cell physiology. Int J Cell Biol. doi:10.1155/2013/604867
  61. Hasegawa H, Wendling J, He F, Trilisky E, Stevenson R, Franey H, Kinderman F, Li G, Piedmonte DM, Osslund T, Shen M, Ketchem RR (2011) In vivo crystallization of human IgG in the endoplasmic reticulum of engineered Chinese hamster ovary (CHO) cells. J Biol Chem 286(22):19917–19931Google Scholar
  62. Hayes NV, Smales CM, Klappa P (2010) Protein disulfide isomerase does not control recombinant IgG4 productivity in mammalian cell lines. Biotechnol Bioeng 105(4):770–779PubMedGoogle Scholar
  63. Hendershot LM, Sitia R (2004) Antibody synthesis and assembly. In: Honjo T, Alt FW, Neuberger MS (eds) Molecular biology of B cells. Elsevier, New York, pp 261–273Google Scholar
  64. Hendershot L, Bole D, Köhler G, Kearney JF (1987) Assembly and secretion of heavy chains that do not associate posttranslationally with immunoglobulin heavy chain-binding protein. J Cell Biol 104(3):761–767PubMedGoogle Scholar
  65. Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13(2):89–102PubMedGoogle Scholar
  66. Hetz C, Martinon F, Rodriguez D, Glimcher LH (2011) The unfolded protein response: integrating stress signals through the stress sensor IRE1α. Physiol Rev 91(4):1219–1243PubMedGoogle Scholar
  67. Hosokawa N, Wada I, Hasegawa K, Yorihuzi T, Tremblay LO, Herscovics A, Nagata K (2001) A novel ER alpha-mannosidase-like protein accelerates ER-associated degradation. EMBO Rep 2(5):415–422PubMedCentralPubMedGoogle Scholar
  68. Hwang SO, Chung JY, Lee GM (2003) Effect of doxycycline-regulated ERp57 expression on specific thrombopoietin productivity of recombinant CHO cells. Biotechnol Prog 19(1):179–184PubMedGoogle Scholar
  69. Jaluria P, Betenbaugh M, Konstantopoulos K, Shiloach J (2007) Enhancement of cell proliferation in various mammalian cell lines by gene insertion of a cyclin-dependent kinase homolog. BMC Biotechnol 7:71PubMedCentralPubMedGoogle Scholar
  70. Kantardjieff A, Jacob NM, Yee JC, Epstein E, Kok YJ, Philp R, Betenbaugh M, Hu WS (2010) Transcriptome and proteome analysis of Chinese hamster ovary cells under low temperature and butyrate treatment. J Biotechnol 145(2):143–159PubMedGoogle Scholar
  71. Kassenbrock CK, Garcia PD, Walter P, Kelly RB (1988) Heavy-chain binding protein recognizes aberrant polypeptides translocated in vitro. Nature 333(6168):90–93PubMedGoogle Scholar
  72. Keenan RJ, Freymann DM, Stroud RM, Walter P (2001) The signal recognition particle. Annu Rev Biochem 70:755–775PubMedGoogle Scholar
  73. Khan SU, Schröder M (2008) Engineering of chaperone systems and of the unfolded protein response. Cytotechnology 57(3):207–231PubMedCentralPubMedGoogle Scholar
  74. Kildegaard HF, Baycin-Hizal D, Lewis NE, Betenbaugh MJ (2013) The emerging CHO systems biology era: harnessing the 'omics revolution for biotechnology. Curr Opin Biotechnol 24:1–6Google Scholar
  75. Kim JM, Kim JS, Park DH, Kang HS, Yoon J, Baek K, Yoon Y (2004) Improved recombinant gene expression in CHO cells using matrix attachment regions. J Biotechnol 107(2):95–105PubMedGoogle Scholar
  76. Kim JY, Kim YG, Han YK, Choi HS, Kim YH, Lee GM (2011) Proteomic understanding of intracellular responses of recombinant Chinese hamster ovary cells cultivated in serum-free medium supplemented with hydrolysates. Appl Microbiol Biotechnol 89(6):1917–1928PubMedGoogle Scholar
  77. Kim JY, Kim YG, Lee GM (2012) CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Appl Microbiol Biotechnol 93(3):917–930PubMedGoogle Scholar
  78. Kleizen B, Braakman I (2004) Protein folding and quality control in the endoplasmic reticulum. Curr Opin Cell Biol 16(4):343–349PubMedGoogle Scholar
  79. Krampe B, Swiderek H, Al-Rubeai M (2008) Transcriptome and proteome analysis of antibody-producing mouse myeloma NS0 cells cultivated at different cell densities in perfusion culture. Biotechnol Appl Biochem 50(Pt 3):133–141PubMedGoogle Scholar
  80. Ku SC, Ng DT, Yap MG, Chao SH (2008) Effects of overexpression of X-box binding protein 1 on recombinant protein production in Chinese hamster ovary and NS0 myeloma cells. Biotechnol Bioeng 99(1):155–164PubMedGoogle Scholar
  81. Ku SC, Toh PC, Lee YY, Chusainow J, Yap MG, Chao SH (2010) Regulation of XBP-1 signaling during transient and stable recombinant protein production in CHO cells. Biotechnol Prog 26(2):517–526PubMedGoogle Scholar
  82. Kwaks TH, Otte AP (2006) Employing epigenetics to augment the expression of therapeutic proteins in mammalian cells. Trends Biotechnol 24(3):137–142PubMedGoogle Scholar
  83. Le Fourn V, Girod PA, Buceta M, Regamey A, Mermod N (2013) CHO cell engineering to prevent polypeptide aggregation and improve therapeutic protein secretion. Metab EngGoogle Scholar
  84. Lee YK, Brewer JW, Hellman R, Hendershot LM (1999) BiP and immunoglobulin light chain cooperate to control the folding of heavy chain and ensure the fidelity of immunoglobulin assembly. Mol Biol Cell 10(7):2209–2219PubMedCentralPubMedGoogle Scholar
  85. Lee K, Tirasophon W, Shen X, Michalak M, Prywes R, Okada T, Yoshida H, Mori K, Kaufman RJ (2002) IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev 16(4):452–466PubMedCentralPubMedGoogle Scholar
  86. Lee AH, Iwakoshi NN, Glimcher LH (2003) XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 23(21):7448–7459PubMedCentralPubMedGoogle Scholar
  87. Lewis NE, Liu X, Li Y, Nagarajan H, Yerganian G, O'Brien E, Bordbar A, Roth AM, Rosenbloom J, Bian C, Xie M, Chen W, Li N, Baycin-Hizal D, Latif H, Forster J, Betenbaugh MJ, Famili I, Xu X, Wang J, Palsson BO (2013) Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome. Nat Biotechnol 31(8):759–765PubMedGoogle Scholar
  88. Li Q, Peterson KR, Fang X, Stamatoyannopoulos G (2002) Locus control regions. Blood 100(9):3077–3086PubMedCentralPubMedGoogle Scholar
  89. Li F, Vijayasankaran N, Shen AY, Kiss R, Amanullah A (2010) Cell culture processes for monoclonal antibody production. MAbs 2(5):466–479PubMedCentralPubMedGoogle Scholar
  90. Lindahl Allen M, Antoniou M (2007) Correlation of DNA methylation with histone modifications across the HNRPA2B1-CBX3 ubiquitously-acting chromatin open element (UCOE). Epigenetics 2(4):227–236PubMedGoogle Scholar
  91. Linder P, Lasko PF, Ashburner M, Leroy P, Nielsen PJ, Nishi K, Schnier J, Slonimski PP (1989) Birth of the D-E-A-D box. Nature 337:121–122PubMedGoogle Scholar
  92. Ma Y, Shimizu Y, Mann MJ, Jin Y, Hendershot LM (2010) Plasma cell differentiation initiates a limited ER stress response by specifically suppressing the PERK-dependent branch of the unfolded protein response. Cell Stress Chaperones 15(3):281–293PubMedCentralPubMedGoogle Scholar
  93. Majors BS, Arden N, Oyler GA, Chiang GG, Pederson NE, Betenbaugh MJ (2008) E2F-1 overexpression increases viable cell density in batch cultures of Chinese hamster ovary cells. J Biotechnol 138(3–4):103–106PubMedGoogle Scholar
  94. Majors BS, Betenbaugh MJ, Pederson NE, Chiang GG (2009) Mcl-1 overexpression leads to higher viabilities and increased production of humanized monoclonal antibody in Chinese hamster ovary cells. Biotechnol Prog 25(4):1161–1168PubMedGoogle Scholar
  95. Marcinowski M, Höller M, Feige MJ, Baerend D, Lamb DC, Buchner J (2011) Substrate discrimination of the chaperone BiP by autonomous and cochaperone-regulated conformational transitions. Nat Struct Mol Biol 18(2):150–158PubMedGoogle Scholar
  96. Marzec M, Eletto D, Argon Y (2012) GRP94: an HSP90-like protein specialized for protein folding and quality control in the endoplasmic reticulum. Biochim Biophys Acta 1823(3):774–787PubMedCentralPubMedGoogle Scholar
  97. Mason M, Sweeney B, Cain K, Stephens P, Sharfstein ST (2012) Identifying bottlenecks in transient and stable production of recombinant monoclonal-antibody sequence variants in Chinese hamster ovary cells. Biotechnol Prog 28(3):846–855PubMedCentralPubMedGoogle Scholar
  98. Meents H, Enenkel B, Eppenberger HM, Werner RG, Fussenegger M (2002) Impact of coexpression and coamplification of sICAM and antiapoptosis determinants bcl-2/bcl-x(L) on productivity, cell survival, and mitochondria number in CHO-DG44 grown in suspension and serum-free media. Biotechnol Bioeng 80(6):706–716PubMedGoogle Scholar
  99. Meleady P, Doolan P, Henry M, Barron N, Keenan J, O'Sullivan F, Clarke C, Gammell P, Melville MW, Leonard M, Clynes M (2011) Sustained productivity in recombinant Chinese hamster ovary (CHO) cell lines: proteome analysis of the molecular basis for a process-related phenotype. BMC Biotechnol 11:78PubMedCentralPubMedGoogle Scholar
  100. Meleady P, Hoffrogge R, Henry M, Rupp O, Bort JH, Clarke C, Brinkrolf K, Kelly S, Müller B, Doolan P, Hackl M, Beckmann TF, Noll T, Grillari J, Barron N, Pühler A, Clynes M, Borth N (2012) Utilization and evaluation of CHO-specific sequence databases for mass spectrometry based proteomics. Biotechnol Bioeng 109(6):1386–1394PubMedGoogle Scholar
  101. Melnick J, Dul JL, Argon Y (1994) Sequential interaction of the chaperones Bip and GRP94 with immunoglobulin chains in the endoplasmic reticulum. Nature 370:373–375PubMedGoogle Scholar
  102. Mezghrani A, Fassio A, Benham A, Simmen T, Braakman I, Sitia R (2001) Manipulation of oxidative protein folding and PDI redox state in mammalian cells. EMBO J 20(22):6288–6296PubMedCentralPubMedGoogle Scholar
  103. Mohan C, Lee GM (2010) Effect of inducible co-overexpression of protein disulfide isomerase and endoplasmic reticulum oxidoreductase on the specific antibody productivity of recombinant Chinese hamster ovary cells. Biotechnol Bioeng 107(2):337–346PubMedGoogle Scholar
  104. Mohan C, Park SH, Chung JY, Lee GM (2007) Effect of doxycycline-regulated protein disulfide isomerase expression on the specific productivity of recombinant CHO cells: thrombopoietin and antibody. Biotechnol Bioeng 98(3):611–615PubMedGoogle Scholar
  105. Mohan C, Kim YG, Koo J, Lee GM (2008) Assessment of cell engineering strategies for improved therapeutic protein production in CHO cells. Biotechnol J 3(5):624–630PubMedGoogle Scholar
  106. Morris JA, Dorner AJ, Edwards CA, Hendershot LM, Kaufman RJ (1997) Immunoglobulin binding protein (BiP) function is required to protect cells from endoplasmic reticulum stress but is not required for the secretion of selective proteins. J Biol Chem 272(7):4327–4334PubMedGoogle Scholar
  107. Murphy TC, Woods NR, Dickson AJ (2001) Expression of the transcription factor GADD153 is an indicator of apoptosis for recombinant Chinese hamster ovary (CHO) cells. Biotechnol Bioeng 75(6):621–629PubMedGoogle Scholar
  108. Nishimiya D, Ogura Y, Sakurai H, Takahashi T (2012) Identification of antibody-interacting proteins that contribute to the production of recombinant antibody in mammalian cells. Appl Microbiol Biotechnol 96(4):971–979PubMedGoogle Scholar
  109. Nishimiya D, Mano T, Miyadai K, Yoshida H, Takahashi T (2013) Overexpression of CHOP alone and in combination with chaperones is effective in improving antibody production in mammalian cells. Appl Microbiol Biotechnol 97(6):2531–2539PubMedGoogle Scholar
  110. Nissom PM, Sanny A, Kok YJ, Hiang YT, Chuah SH, Shing TK, Lee YY, Wong KT, Hu WS, Sim MY, Philp R (2006) Transcriptome and proteome profiling to understanding the biology of high productivity CHO cells. Mol Biotechnol 34(2):125–140PubMedGoogle Scholar
  111. Oda Y, Hosokawa N, Wada I, Nagata K (2003) EDEM as an acceptor of terminally misfolded glycoproteins released from calnexin. Science 299(5611):1394–1397PubMedGoogle Scholar
  112. Ohya T, Hayashi T, Kiyama E, Nishii H, Miki H, Kobayashi K, Honda K, Omasa T, Ohtake H (2008) Improved production of recombinant human antithrombin III in Chinese hamster ovary cells by ATF4 overexpression. Biotechnol Bioeng 100(2):317–324PubMedGoogle Scholar
  113. Omasa T, Takami T, Ohya T, Kiyama E, Hayashi T, Nishii H, Miki H, Kobayashi K, Honda K, Ohtake H (2008) Overexpression of GADD34 enhances production of recombinant human antithrombin III in Chinese hamster ovary cells. J Biosci Bioeng 106(6):568–573PubMedGoogle Scholar
  114. Omasa T, Cao Y, Park JY, Takagi Y, Kimura S, Yano H, Honda K, Asakawa S, Shimizu N, Ohtake H (2009) Bacterial artificial chromosome library for genome-wide analysis of Chinese hamster ovary cells. Biotechnol Bioeng 104(5):986–994PubMedGoogle Scholar
  115. Otte AP, Kwaks TH, van Blokland RJ, Sewalt RG, Verhees J, Klaren VN, Siersma TK, Korse HW, Teunissen NC, Botschuijver S, van Mer C, Man SY (2007) Various expression-augmenting DNA elements benefit from STAR-Select, a novel high stringency selection system for protein expression. Biotechnol Prog 23(4):801–807PubMedGoogle Scholar
  116. Oyadomari S, Mori M (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11(4):381–389PubMedGoogle Scholar
  117. Pascoe DE, Arnott D, Papoutsakis ET, Miller WM, Andersen DC (2007) Proteome analysis of antibody-producing CHO cell lines with different metabolic profiles. Biotechnol Bioeng 98(2):391–410PubMedGoogle Scholar
  118. Peng RW, Fussenegger M (2009) Molecular engineering of exocytic vesicle traffic enhances the productivity of Chinese hamster ovary cells. Biotechnol Bioeng 102(4):1170–1181PubMedGoogle Scholar
  119. Peng RW, Abellan E, Fussenegger M (2011) Differential effect of exocytic SNAREs on the production of recombinant proteins in mammalian cells. Biotechnol Bioeng 108(3):611–620PubMedGoogle Scholar
  120. Pestova TV, Kolupaeva VG, Lomakin IB, Pilipenko EV, Shatsky IN, Agol VI, Hellen CU (2001) Molecular mechanisms of translation initiation in eukaryotes. Proc Natl Acad Sci U S A 98:7029–7036PubMedCentralPubMedGoogle Scholar
  121. Phi-Van L, von Kries JP, Ostertag W, Strätling WH (1990) The chicken lysozyme 5′ matrix attachment region increases transcription from a heterologous promoter in heterologous cells and dampens position effects on the expression of transfected genes. Mol Cell Biol 10(5):2302–2307PubMedCentralPubMedGoogle Scholar
  122. Ronzoni R, Anelli T, Brunati M, Cortini M, Fagioli C, Sitia R (2010) Pathogenesis of ER storage disorders: modulating Russell body biogenesis by altering proximal and distal quality control. Traffic 11(7):947–957PubMedGoogle Scholar
  123. Schlatter S, Stansfield SH, Dinnis DM, Racher AJ, Birch JR, James DC (2005) On the optimal ratio of heavy to light chain genes for efficient recombinant antibody production by CHO cells. Biotechnol Prog 21(1):122–133PubMedGoogle Scholar
  124. Schröder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789PubMedGoogle Scholar
  125. Shen Y, Hendershot LM (2005) ERdj3, a stress-inducible endoplasmic reticulum DnaJ homologue, serves as a cofactor for Bip's interactions with unfolded substrates. Mol Biol Cell 16)(1):40–50Google Scholar
  126. Shusta EV, Raines RT, Plückthun A, Wittrup KD (1998) Increasing the secretory capacity of Saccharomyces cerevisiae for production of single-chain antibody fragments. Nat Biotechnol 16(8):773–777PubMedGoogle Scholar
  127. Sitia R, Braakman I (2003) Quality control in the endoplasmic reticulum protein factory. Nature 426(6968):891–894PubMedGoogle Scholar
  128. Smales CM, Dinnis DM, Stansfield SH, Alete D, Sage EA, Birch JR, Racher AJ, Marshall CT, James DC (2004) Comparative proteomic analysis of GS-NS0 murine myeloma cell lines with varying recombinant monoclonal antibody production rate. Biotechnol Bioeng 88(4):474–488PubMedGoogle Scholar
  129. Stansfield SH, Allen EE, Dinnis DM, Racher AJ, Birch JR, James DC (2007) Dynamic analysis of GS-NS0 cells producing a recombinant monoclonal antibody during fed-batch culture. Biotechnol Bioeng 97(2):410–424PubMedGoogle Scholar
  130. Steiner LA, Lopes AD (1979) The crystallizable human myeloma protein Dob has a hinge-region deletion. Biochemistry 18(19):4054–4067PubMedGoogle Scholar
  131. Steiner LA, Pardo AG, Margolies MN (1979) Amino acid sequence of the heavy-chain variable region of the crystallizable human myeloma protein Dob. Biochemistry 18(19):4068–4080PubMedGoogle Scholar
  132. Stoops J, Byrd S, Hasegawa H (2012) Russell body inducing threshold depends on the variable domain sequences of individual human IgG clones and the cellular protein homeostasis. Biochim Biophys Acta 1823(10):1643–1657PubMedGoogle Scholar
  133. Tamura T, Sunryd JC, Hebert DN (2010) Sorting things out through endoplasmic reticulum quality control. Mol Membr Biol 27(8):412–427PubMedCentralPubMedGoogle Scholar
  134. Tasso D, Gulbahce HE, Berger MJ, McKenna RW, Pambuccian SE (2012) Intracytoplasmic crystalline and globular inclusions in small lymphocytic lymphoma in transformation. Diagn Cytopathol 40(1):42–44PubMedGoogle Scholar
  135. Tatu U, Helenius A (1997) Interactions between newly synthesized glycoproteins, calnexin and a network of resident chaperones in the endoplasmic reticulum. J Cell Biol 136(3):555–565PubMedCentralPubMedGoogle Scholar
  136. Tey BT, Singh RP, Piredda L, Piacentini M, Al-Rubeai M (2000) Influence of bcl-2 on cell death during the cultivation of a Chinese hamster ovary cell line expressing a chimeric antibody. Biotechnol Bioeng 68(1):31–43PubMedGoogle Scholar
  137. Thies MJ, Mayer J, Augustine JG, Frederick CA, Lilie H, Buchner J (1999) Folding and association of the antibody domain CH3: prolyl isomerization preceeds dimerization. J Mol Biol 293(1):67–79PubMedGoogle Scholar
  138. Thies MJ, Talamo F, Mayer M, Bell S, Ruoppolo M, Marino G, Buchner J (2002) Folding and oxidation of the antibody domain C(H)3. J Mol Biol 319(5):1267–1277PubMedGoogle Scholar
  139. Tigges M, Fussenegger M (2006) Xbp1-based engineering of secretory capacity enhances the productivity of Chinese hamster ovary cells. Metab Eng 8(3):264–272PubMedGoogle Scholar
  140. Underhill MF, Coley C, Birch JR, Findlay A, Kallmeier R, Proud CG, James DC (2003) Engineering mRNA translation initiation to enhance transient gene expression in Chinese hamster ovary cells. Biotechnol Prog 19(1):121–129PubMedGoogle Scholar
  141. Ushioda R, Hoseki J, Araki K, Jansen G, Thomas DY, Nagata K (2008) ERdj5 is required as a disulfide reductase for degradation of misfolded proteins in the ER. Science 321(5888):569–572PubMedGoogle Scholar
  142. van Anken E, Romijn EP, Maggioni C, Mezghrani A, Sitia R, Braakman I, Heck AJ (2003) Sequential waves of functionally related proteins are expressed when B cells prepare for antibody secretion. Immunity 18(2):243–253PubMedGoogle Scholar
  143. Walsh G (2010) Biopharmaceutical benchmarks 2010. Nat Biotechnol 28(9):917–924PubMedGoogle Scholar
  144. Walter P, Blobel G (1981a) Translocation of proteins across the endoplasmic reticulum. II. Signal recognition protein (SRP) mediates the selective binding to microsomal membranes of in-vitro-assembled polysomes synthesizing secretory protein. J Cell Biol 91(2 Pt 1):551–556PubMedGoogle Scholar
  145. Walter P, Blobel G (1981b) Translocation of proteins across the endoplasmic reticulum III. Signal recognition protein (SRP) causes signal sequence-dependent and site-specific arrest of chain elongation that is released by microsomal membranes. J Cell Biol 91(2 Pt 1):557–561PubMedGoogle Scholar
  146. Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334(6059):1081–1086PubMedGoogle Scholar
  147. Walter P, Ibrahimi I, Blobel G (1981) Translocation of proteins across the endoplasmic reticulum. I. Signal recognition protein (SRP) binds to in-vitro-assembled polysomes synthesizing secretory protein. J Cell Biol 91(2 Pt 1):545–550PubMedGoogle Scholar
  148. Wang XZ, Harding HP, Zhang Y, Jolicoeur EM, Kuroda M, Ron D (1998) Cloning of mammalian Ire1 reveals diversity in the ER stress responses. EMBO J 17(19):5708–5717PubMedCentralPubMedGoogle Scholar
  149. Wiest DL, Burkhardt JK, Hester S, Hortsch M, Meyer DI, Argon Y (1990) Membrane biogenesis during B cell differentiation: most endoplasmic reticulum proteins are expressed coordinately. J Cell Biol 110(5):1501–1511PubMedGoogle Scholar
  150. Williams DB (2006) Beyond lectins: the calnexin/calreticulin chaperone system of the endoplasmic reticulum. J Cell Sci 119(Pt 4):615–623PubMedGoogle Scholar
  151. Williams S, Mustoe T, Mulcahy T, Griffiths M, Simpson D, Antoniou M, Irvine A, Mountain A, Crombie R (2005) CpG-island fragments from the HNRPA2B1/CBX3 genomic locus reduce silencing and enhance transgene expression from the hCMV promoter/enhancer in mammalian cells. BMC Biotechnol 5:17PubMedCentralPubMedGoogle Scholar
  152. Wlaschin KF, Nissom PM, Gatti Mde L, Ong PF, Arleen S, Tan KS, Rink A, Cham B, Wong K, Yap M, Hu WS (2005) EST sequencing for gene discovery in Chinese hamster ovary cells. Biotechnol Bioeng 91(5):592–606PubMedGoogle Scholar
  153. Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22(11):1393–1398PubMedGoogle Scholar
  154. Xu P, Raden D, Doyle FJ 3rd, Robinson AS (2005) Analysis of unfolded protein response during single-chain antibody expression in Saccharomyces cerevisiae reveals different roles for BiP and PDI in folding. Metab Eng 7(4):269–279PubMedGoogle Scholar
  155. Xu X, Nagarajan H, Lewis NE, Pan S, Cai Z, Liu X, Chen W, Xie M, Wang W, Hammond S, Andersen MR, Neff N, Passarelli B, Koh W, Fan HC, Wang J, Gui Y, Lee KH, Betenbaugh MJ, Quake SR, Famili I, Palsson BO, Wang J (2011) The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat Biotechnol 29(8):735–741PubMedCentralPubMedGoogle Scholar
  156. Yamamoto K, Sato T, Matsui T, Sato M, Okada T, Yoshida H, Harada A, Mori K (2007) Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1. Dev Cell 13(3):365–376PubMedGoogle Scholar
  157. Yoshida H, Haze K, Yanagi H, Yura T, Mori K (1998) Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J Biol Chem 273(50):33741–33749PubMedGoogle Scholar
  158. Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107(7):881–891PubMedGoogle Scholar
  159. Yu M, Hu Z, Pacis E, Vijayasankaran N, Shen A, Li F (2011) Understanding the intracellular effect of enhanced nutrient feeding toward high titer antibody production process. Biotechnol Bioeng 108(5):1078–1088PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.New Modality Research Laboratories, R&D DivisionDaiichi Sankyo Co., Ltd.TokyoJapan

Personalised recommendations