Applied Microbiology and Biotechnology

, Volume 98, Issue 2, pp 843–853 | Cite as

Identification of novel GAPDH-derived antimicrobial peptides secreted by Saccharomyces cerevisiae and involved in wine microbial interactions

  • Patrícia Branco
  • Diana Francisco
  • Christophe Chambon
  • Michel Hébraud
  • Nils Arneborg
  • Maria Gabriela Almeida
  • Jorge Caldeira
  • Helena Albergaria
Applied microbial and cell physiology

Abstract

Saccharomyces cerevisiae plays a primordial role in alcoholic fermentation and has a vast worldwide application in the production of fuel-ethanol, food and beverages. The dominance of S. cerevisiae over other microbial species during alcoholic fermentations has been traditionally ascribed to its higher ethanol tolerance. However, recent studies suggested that other phenomena, such as microbial interactions mediated by killer-like toxins, might play an important role. Here we show that S. cerevisiae secretes antimicrobial peptides (AMPs) during alcoholic fermentation that are active against a wide variety of wine-related yeasts (e.g. Dekkera bruxellensis) and bacteria (e.g. Oenococcus oeni). Mass spectrometry analyses revealed that these AMPs correspond to fragments of the S. cerevisiae glyceraldehyde 3-phosphate dehydrogenase (GAPDH) protein. The involvement of GAPDH-derived peptides in wine microbial interactions was further sustained by results obtained in mixed cultures performed with S. cerevisiae single mutants deleted in each of the GAPDH codifying genes (TDH1-3) and also with a S. cerevisiae mutant deleted in the YCA1 gene, which codifies the apoptosis-involved enzyme metacaspase. These findings are discussed in the context of wine microbial interactions, biopreservation potential and the role of GAPDH in the defence system of S. cerevisiae.

Keywords

Antimicrobial peptides Wine microbial interactions Alcoholic fermentation Biopreservation Metacaspases Glyceraldehyde-3-phosphate dehydrogenase 

Notes

Acknowledgments

The present work was financed by FEDER funds through POFC-COMPETE and by national funds through Fundação para a Ciência e a Tecnologia (FCT) in the scope of project FCOMP-01-0124-FEDER-014055. M.G.A. and J.C. acknowledge the funding support from FCT (PEst-C/EQB/LA0006/2011). Patrícia Branco is the recipient of a PhD fellowship (SFRH/BD/89673/2012) funded by FCT, Portugal. We want also to thanks to Professors Isabel Sá-Correia (IST/UTL, Lisbon, Portugal), Luísa Marinho (FCUL, Lisbon, Portugal) and Paula Ludovico (ICVS/UM, Braga, Portugal) for kindly providing some mutant strains.

Supplementary material

253_2013_5411_MOESM1_ESM.pdf (84 kb)
ESM 1(PDF 84 kb)

References

  1. Albergaria H, Francisco D, Gori K, Arneborg N, Gírio F (2010) Saccharomyces cerevisiae CCMI 885 secretes peptides that inhibit the growth of some non-Saccharomyces wine-related strains. Appl Microbiol Biotechnol 86:965–972. doi:10.1007/s00253-009-2409-6 PubMedCrossRefGoogle Scholar
  2. Arneborg N, Siegumfeldt H, Andersen GH, Nissen P, Daria VR, Rodrigo PJ, Glückstad J (2005) Interactive optical trapping shows that confinement is a determinant of growth in a mixed yeast culture. FEMS Microbiol Lett 245:155–159. doi:10.1016/j.femsle.2005.03.008 PubMedCrossRefGoogle Scholar
  3. Barata A, Caldeira J, Botelheiro R, Pagliara D, Malfeito-Ferreira M, Loureiro V (2008) Survival patterns of Dekkera bruxellensis in wines and inhibitory effect of sulphur dioxide. Int J Food Microbiol 121:201–207. doi:10.1016/j.ijfoodmicro.2007.11.020 PubMedCrossRefGoogle Scholar
  4. Basílio ACM, Araújo PCM, Morais JOF, Silva-Filho EA, Morais MA, Simões DA (2008) Detection and identification of wild yeast contaminants of the industrial fuel ethanol fermentation process. Curr Microbiol 56:322–226. doi:10.1007/s00284-007-9085-5 PubMedCrossRefGoogle Scholar
  5. Bauer FF, Pretorius IS (2000) Yeast stress response and fermentation efficiency: how to survive the making of wine—a review. S Afr J Enol Vitic 21:27–51Google Scholar
  6. Bisson LF (1999) Stuck and sluggish fermentations. Am J Enol Vitic 50:107–119Google Scholar
  7. Comitini F, Ciani M (2011) Kluyveromyces wickerhamii killer toxin: purification and activity towards Brettanomyces/Dekkera yeasts in grape must. FEMS Microbiol Lett 316:77–82. doi:10.1111/j.1574-6968.2004.tb09761.x PubMedCrossRefGoogle Scholar
  8. Comitini F, De JI, Pepe L, Mannazzu I, Ciani M (2004) Pichia anomala and Kluyveromyces wickerhamii killer toxins as new tools against Dekkera/Brettanomyces spoilage yeasts. FEMS Microbiol Lett 238:235–240. doi:10.1016/j.femsle.2004.07.040
  9. Comitini F, Ferretti R, Clementi F, Mannuzzu I, Ciani M (2005) Interactions between Saccharomyces cerevisiae and malolactic bacteria: preliminary characterization of a yeast proteinaceous compound(s) active against Oenococcus oeni. J Appl Microbiol 99:105–111. doi:10.1111/j.1365-2672.2005.02579.x PubMedCrossRefGoogle Scholar
  10. Delgado ML, O’Connor JE, Azorin I, Renau-Piqueras J, Gil ML, Gozalbo D (2001) The glyceraldehyde-3-phosphate dehydrogenase polypeptides encoded by the Saccharomyces cerevisiae TDH1, TDH2 and TDH3 genes are also cell wall proteins. Microbiol 147:411–417Google Scholar
  11. Delgado ML, Gil ML, Gozalbo D (2003) Starvation and temperature upshift cause an increase in the enzymaticaly active cell wall-associated glyceraldehyde-3-phosphate dehydrogenase protein in yeast. FEMS Yeast Res 4:297–303. doi:10.1016/S1567-1356(03)00159-4 PubMedCrossRefGoogle Scholar
  12. Fleet GH, Heard GM (1993) Yeast growth during fermentation. In: Fleet GH (ed) Wine microbiology and biotechnology. Harwood Academic Publishers, Basel, Switzerland, pp 27–54Google Scholar
  13. Hansen EH, Nissen P, Sommer P, Nielsen JC, Arneborg N (2001) The effect of oxygen on the survival of non-Saccharomyces yeasts during mixed culture fermentations of grape juice with Saccharomyces cerevisiae. J Appl Microbiol 91:541–547. doi:10.1046/j.1365-2672.2001.01426.x CrossRefGoogle Scholar
  14. Liberal AT, Basílio ACM, Resende AM, Brasileiro BTV, Silva-Filho EA, Morais JOF, Simões DA, Morais MA (2007) Identification of Dekkera bruxellensis as a major contaminant yeast in continuous fuel ethanol fermentation. J Appl Microbiol 102:538–547. doi:10.1111/j.1365-2672.2006.03082.x Google Scholar
  15. Loureiro V, Malfeito-Ferreira M (2003) Spoilage yeasts in the wine industry (review). Int J Food Microbiol 86:23–50. doi:10.1016/S0168-1605(03)00246-0 PubMedCrossRefGoogle Scholar
  16. McAlister L, Holland MJ (1985a) Isolation and characterization of yeast strains carrying mutations in the glyceraldehyde-3-phosphate dehydrogenase genes. J Biol Chem 260:15013–15018PubMedGoogle Scholar
  17. McAlister L, Holland MJ (1985b) Differential expression of the three yeast glyceraldehyde-3-phosphate dehydrogenase genes. J Biol Chem 260:15019–15027PubMedGoogle Scholar
  18. Nehme N, Mathieu F, Taillandier P (2010) Impact of the co-culture of Saccharomyces cerevisiaeOenococcus oeni on malolactic fermentation and partial characterization of a yeast-derived inhibitory peptidic fraction. Food Microbiol 27:150–157. doi:10.1016/j.fm.2009.09.008 PubMedCrossRefGoogle Scholar
  19. Nakajima H, Amano W, Kubo T, Fukuhara A, Ihara H, Azuma YT, Tajima H, Inui T, Sawa A, Takeuchi T (2009) Glyceraldehyde-3-phosphate dehydrogenase aggregate formation participates in oxidative stress-induced cell death. J Cell Biochem 284:34331–34341. doi:10.1074/jbc.M109.027698 Google Scholar
  20. Nissen P, Arneborg N (2003) Characterization of early deaths of non-Saccharomyces yeasts in mixed cultures with Saccharomyces cerevisiae. Arch Microbiol 180:257–263. doi:10.1007/s00203-003-0585-9 PubMedCrossRefGoogle Scholar
  21. Nissen P, Nielsen D, Arneborg N (2003) Viable Saccharomyces cerevisiae cells at high concentrations cause early growth arrest of non-Saccharomyces yeasts in mixed cultures by a cell-cell contact-mediated mechanism. Yeast 20:331–341. doi:10.1002/yea.965 PubMedCrossRefGoogle Scholar
  22. Osborne JP, Edwards CG (2007) Inhibition of malolactic fermentation by a peptide produced by Saccharomyces cerevisiae during alcoholic fermentation. Int J Food Microbiol 118:27–34. doi:10.1016/j.ijfoodmicro.2007.05.007 PubMedCrossRefGoogle Scholar
  23. Pérez F, Ramírez M, Regodón JA (2001) Influence of killer strains of Saccharomyces cerevisiae on wine fermentation. Antonie Van Leeuwenhoek 79:393–399. doi:10.1023/A:1012034608908 PubMedCrossRefGoogle Scholar
  24. Pérez-Nevado F, Albergaria H, Hogg T, Gírio F (2006) Cellular death of two non-Saccharomyces wine-related yeasts during mixed fermentations with Saccharomyces cerevisiae. Int J Food Microbiol 108:336–345. doi:10.1016/j.ijfoodmicro.2005.12.012 PubMedGoogle Scholar
  25. Pretorius IS (2000) Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast 16:675–729. doi:10.1002/1097-0061(20000615)16:8<675::AID-YEA585>3.0.CO;2-B PubMedCrossRefGoogle Scholar
  26. Seo J-K, Lee MJ, Go H-J, Tae Hyun Park TH, Park NG (2012) Purification and characterization of YFGAP, a GAPDH-related novel antimicrobial peptide, from the skin of yellowfin tuna, Thunnus albacores. Fish & Shellfish Immunol 33:743–752. doi:10.1016/j.fsi.2012.06.023 CrossRefGoogle Scholar
  27. Silva A, Almeida B, Sampaio-Marques B, Reis MIR, Ohlmeier S, Rodrigues F, Do Vale A, Ludovico P (2011) Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a specific substrate of yeast metacaspase. Biochem Biophys Acta 1813:2044–2049. doi:10.1016/j.bbamcr.2011.09.010 PubMedCrossRefGoogle Scholar
  28. Sirover MA (2005) New nuclear functions of the glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase, in mammalian cells. J Cell Biochem 95:45–52. doi:10.1002/jcb.20399 PubMedCrossRefGoogle Scholar
  29. Wagener J, Schneider JJ, Baxmann S, Kalbacher H, Borelli C, Nuding S, Küchler R, Wehkamp J, Kaeser MD, Mailänder-Sanchez D, Braunsdorf C, Hube B, Schild L, Forssmann W-G, Korting H-C, Liepke C, Schaller M (2013) A peptide derived from the highly conserved protein GAPDH is involved in tissue protection by different antifungal strategies and epithelial immunomodulation. J Investigat Dermatol 133:144–153. doi:10.1038/jid.2012.254 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Patrícia Branco
    • 1
  • Diana Francisco
    • 1
  • Christophe Chambon
    • 2
  • Michel Hébraud
    • 2
  • Nils Arneborg
    • 3
  • Maria Gabriela Almeida
    • 4
    • 5
  • Jorge Caldeira
    • 4
    • 5
  • Helena Albergaria
    • 1
  1. 1.Unit of BioenergyLaboratório Nacional de Energia e Geologia (LNEG)LisbonPortugal
  2. 2.INRA, Plate-Forme d’Exploration du Métabolisme composante protéomique (PFEMcp)Saint-Genès ChampanelleFrance
  3. 3.Department of Food Science, Faculty of ScienceUniversity of CopenhagenFrederiksberg CDenmark
  4. 4.REQUIMTE—Departamento de Química, Faculdade de Ciências e Tecnologia (UNL)Monte de CaparicaPortugal
  5. 5.Instituto Superior de Saúde Egas MonizCampus UniversitárioMonte de CaparicaPortugal

Personalised recommendations