Applied Microbiology and Biotechnology

, Volume 98, Issue 2, pp 509–518 | Cite as

Microbial catalysis in bioelectrochemical technologies: status quo, challenges and perspectives



Over the past decade, microbial electrochemical technologies, originally developed from an interesting physiological phenomenon, have evolved from a rush of initiatives for sustainable bioelectricity generation to a multitude of specialized applications in very different areas. Genetic engineering of microbial biocatalysts for target bioelectrochemical applications like biosensing or bioremediation, as well as the discovery of entirely new bioelectrochemical processes such as microbial electrosynthesis of commodity chemicals, open up completely new possibilities. Where stands this technology today? And what are the general and specific challenges it faces not only scientifically but also for transition into commercial applications? This review intends to summarize the recent advances and provides a perspective on future developments.


Bioelectrochemical systems Microbial fuel cells Microbial electrosynthesis Wastewater treatment Bioremediation Biosensing 


  1. Aulenta F, Canosa A, Reale P, Rossetti S, Panero S, Majone M (2009) Microbial reductive dechlorination of trichloroethene to ethene with electrodes serving as electron donors without the external addition of redox mediators. Biotechnol Bioeng 103:85–91PubMedCrossRefGoogle Scholar
  2. Bonanni PS, Massazza D, Busalmen JP (2013) Stepping stones in the electron transport from cells to electrodes in Geobacter sulfurreducens biofilms. Phys Chem Chem Phys 15:10300–10306PubMedCrossRefGoogle Scholar
  3. Cabrol L, Malhautier L (2011) Integrating microbial ecology in bioprocess understanding: the case of gas biofiltration. Appl Microbiol Biotechnol 90:837–849PubMedCrossRefGoogle Scholar
  4. Chang IS, Moon H, Jang JK, Kim BH (2005) Improvement of a microbial fuel cell performance as a BOD sensor using respiratory inhibitors. Biosens Bioelectron 20:1856–1859PubMedCrossRefGoogle Scholar
  5. Cheng S, Xing D, Call DF, Logan BE (2009) Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol 43:3953–3958PubMedCrossRefGoogle Scholar
  6. Cusick RD, Bryan B, Parker DS, Merrill MD, Mehanna M, Kiely PD, Liu G, Logan BE (2011) Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater. Appl Microbiol Biotechnol 89:2053–2063PubMedCrossRefGoogle Scholar
  7. Dekker A, Heijne AT, Saakes M, Hamelers HVM, Buisman CJN (2009) Analysis and improvement of a scaled-up and stacked microbial fuel cell. Environ Sci Technol 43:9038–9042PubMedCrossRefGoogle Scholar
  8. Dennis PG, Harnisch F, Yeoh YK, Tyson GW, Rabaey K (2013) Dynamics of cathode-associated microbial communities and metabolite profiles in a glycerol-fed bioelectrochemical system. Appl Environ Microbiol 79:4008–4014PubMedCentralPubMedCrossRefGoogle Scholar
  9. Emde R, Schink B (1990) Enhanced propionate formation by Propionibacterium freudenreichii subsp. freudenreichii in a three-electrode amperometric culture system. Appl Environ Microbiol 56:2771–2776PubMedCentralPubMedGoogle Scholar
  10. Flynn JM, Ross DE, Hunt KA, Bond DR, Gralnick JA (2010) Enabling unbalanced fermentations by using engineered electrode-interfaced bacteria. MBio 1:e00190–00110PubMedCentralPubMedCrossRefGoogle Scholar
  11. Foley JM, Rozendal RA, Hertle CR, Lant PA, Rabaey K (2010) Life cycle assessment of high-rate anaerobic treatment, microbial fuel cells, and microbial electrolysis cells. Environ Sci Technol 44:3629–3637PubMedCrossRefGoogle Scholar
  12. Fornero JJ, Rosenbaum M, Angenent LT (2010a) Electric power generation from municipal, food, and animal wastewaters using microbial fuel cells. Electroanalysis 22:832–843CrossRefGoogle Scholar
  13. Fornero JJ, Rosenbaum M, Cotta MA, Angenent LT (2010b) Carbon dioxide addition to microbial fuel cell cathodes maintains sustainable catholyte pH and improves anolyte pH, alkalinity, and conductivity. Environ Sci Technol 44:2728–2734PubMedCrossRefGoogle Scholar
  14. Franks AE, Nevin KP (2010) Microbial fuel cells, a current review. Energies 3:899–919CrossRefGoogle Scholar
  15. Freguia S, Tsujimura S, Kano K (2010) Electron transfer pathways in microbial oxygen biocathodes. Electrochim Acta 55:813–818CrossRefGoogle Scholar
  16. Friedman ES, Rosenbaum MA, Lee AW, Lipson DA, Land BR, Angenent LT (2012) A cost-effective and field-ready potentiostat that poises subsurface electrodes to monitor bacterial respiration. Biosens Bioelectron 32:309–313PubMedCrossRefGoogle Scholar
  17. Gong Y, Radachowsky SE, Wolf M, Nielsen ME, Girguis PR, Reimers CE (2011) Benthic microbial fuel cell as direct power source for an acoustic modem and seawater oxygen/temperature sensor system. Environ Sci Technol 45:5047–5053PubMedCrossRefGoogle Scholar
  18. Gregory KB, Lovley DR (2005) Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ Sci Technol 39:8943–8947PubMedCrossRefGoogle Scholar
  19. Hays S, Zhang F, Logan BE (2011) Performance of two different types of anodes in membrane electrode assembly microbial fuel cells for power generation from domestic wastewater. J Power Sources 196:8293–8300CrossRefGoogle Scholar
  20. Hongo M, Iwahara M (1979) Application of electro-energizing method to l-glutamic acid fermentation. Agr Biol Chem Tokyo 43:2075–2081CrossRefGoogle Scholar
  21. Huang L, Chen J, Quan X, Yang F (2010) Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell. Bioprocess Biosyst Eng 33:937–945PubMedCrossRefGoogle Scholar
  22. Ieropoulos IA, Greenman J, Melhuish C, Horsfield I (2012) Microbial fuel cells for robotics: energy autonomy through artificial symbiosis. ChemSusChem 5:1020–1026PubMedCrossRefGoogle Scholar
  23. Kim TS, Kim BH (1988) Electron flow shift in Clostridium acetobutylicum fermentation by electrochemically introduced reducing equivalent. Biotechnol Lett 10:123–128CrossRefGoogle Scholar
  24. Kotloski NJ, Gralnick JA (2013) Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis. MBio 4:e00553–00512PubMedCentralPubMedCrossRefGoogle Scholar
  25. Leang C, Malvankar NS, Franks AE, Nevin KP, Lovley DR (2013) Engineering Geobacter sulfurreducens to produce a highly cohesive conductive matrix with enhanced capacity for current production. Energy Environ Sci 6:1901–1908CrossRefGoogle Scholar
  26. Leung KM, Wanger G, El-Naggar MY, Gorby Y, Southam G, Lau WM, Yang J (2013) Shewanella oneidensis MR-1 bacterial nanowires exhibit p-type, tunable electronic behavior. Nano Let 13:2407–2411CrossRefGoogle Scholar
  27. Li Z, Venkataraman A, Rosenbaum MA, Angenent LT (2012) A laminar-flow microfluidic device for quantitative analysis of microbial electrochemical activity. ChemSusChem 5:1119–1123PubMedCrossRefGoogle Scholar
  28. Logan BE (2004) Extracting hydrogen and energy from renewable resources . Environ Sci Techno 38:160–167Google Scholar
  29. Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7:375–381PubMedCrossRefGoogle Scholar
  30. Logan BE (2010) Scaling up microbial fuel cells and other bioelectrochemical systems. Appl Microbiol Biotechnol 85:1665–1671PubMedCrossRefGoogle Scholar
  31. Logan BE, Rabaey K (2012) Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337:686–690PubMedCrossRefGoogle Scholar
  32. Lovley DR (1991) Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Rev 55:259–287PubMedCentralPubMedGoogle Scholar
  33. Lovley DR (2011) Live wires: direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination. Energy Environ Sci 4:4896–4906CrossRefGoogle Scholar
  34. Lovley DR (2012) Electromicrobiology. Annu Rev Microbiol 66:391–409PubMedCrossRefGoogle Scholar
  35. Malvankar NS, Lovley DR (2012) Microbial nanowires: a new paradigm for biological electron transfer and bioelectronics. ChemSusChem 5:1039–1046PubMedCrossRefGoogle Scholar
  36. Marshall CW, Ross DE, Fichot EB, Norman RS, May HD (2012) Electrosynthesis of commodity chemicals by an autotrophic microbial community. Appl Environ Microbiol 78:8412–8420PubMedCentralPubMedCrossRefGoogle Scholar
  37. Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR (2008) Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci U S A 105:3968–3973PubMedCentralPubMedCrossRefGoogle Scholar
  38. Masuda M, Freguia S, Wang YF, Tsujimura S, Kano K (2010) Flavins contained in yeast extract are exploited for anodic electron transfer by Lactococcus lactis. Bioelectrochemistry 78:173–175PubMedCrossRefGoogle Scholar
  39. Morita M, Malvankar NS, Franks AE, Summers ZM, Giloteaux L, Rotaru AE, Rotaru C, Lovley DR (2011) Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates. MBio 2:e00159–00111PubMedCentralPubMedCrossRefGoogle Scholar
  40. Nealson KH, Myers CR (1992) Microbial reduction of manganese and iron: new approaches to carbon cycling. Appl Environ Microbiol 58:439–443PubMedCentralPubMedGoogle Scholar
  41. Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR (2010) Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio 1:e00103–00110PubMedCentralPubMedCrossRefGoogle Scholar
  42. Nielsen PH, Saunders AM, Hansen AA, Larsen P, Nielsen JL (2012) Microbial communities involved in enhanced biological phosphorus removal from wastewater — a model system in environmental biotechnology. Curr Opin Biotechnol 23:452–459PubMedCrossRefGoogle Scholar
  43. Patil S, Harnisch F, Schröder U (2010) Toxicity response of electroactive microbial biofilms—a decisive feature for potential biosensor and power source applications. ChemPhysChem 11:2834–2837PubMedCrossRefGoogle Scholar
  44. Pfeffer C, Larsen S, Song J, Dong M, Besenbacher F, Meyer RL, Kjeldsen KU, Schreiber L, Gorby YA, El-Naggar MY, Leung KM, Schramm A, Risgaard-Petersen N, Nielsen LP (2012) Filamentous bacteria transport electrons over centimetre distances. Nature 491:218–221PubMedCrossRefGoogle Scholar
  45. Rabaey K, Rozendal RA (2010) Microbial electrosynthesis — revisiting the electrical route for microbial production. Nat Rev Microbiol 8:706–716PubMedCrossRefGoogle Scholar
  46. Rabaey K, Boon N, Verstraete W, Höfte M (2005) Microbial phenazine production enhances electron transfer in biofuel cells. Environ Sci Technol 39:3401–3408PubMedCrossRefGoogle Scholar
  47. Rabaey K, Bützer S, Brown S, Jr K, Rozendal RA (2010) High current generation coupled to caustic production using a lamellar bioelectrochemical system. Environ Sci Technol 44:4315–4321PubMedCrossRefGoogle Scholar
  48. Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101PubMedCrossRefGoogle Scholar
  49. Reguera G, Nevin KP, Nicoll JS, Covalla SF, Woodard TL, Lovley DR (2006) Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl Environ Microbiol 72:7345–7348PubMedCentralPubMedCrossRefGoogle Scholar
  50. Ren Z, Steinberg LM, Regan JM (2008) Electricity production and microbial biofilm characterization in cellulose-fed microbial fuel cells. Water Sci Technol 58:617–622PubMedCrossRefGoogle Scholar
  51. Rosenbaum M, Agler MT, Fornero JJ, Venkataraman A, Angenent LT (2010) Integrating BES in the wastewater and sludge treatment line. In: Rabaey K et al (eds) Bioelectrochemical systems: from extracellular electron transfer to biotechnological application. International Water Association, London, pp 393–408Google Scholar
  52. Rosenbaum M, Aulenta F, Villano M, Angenent LT (2011) Cathodes as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are involved? Bioresour Technol 102:324–333PubMedCrossRefGoogle Scholar
  53. Ross DE, Flynn JM, Baron DB, Gralnick JA, Bond DR (2011) Towards electrosynthesis in Shewanella: energetics of reversing the Mtr pathway for reductive metabolism. PLoS One 6Google Scholar
  54. Rozendal RA, Jeremiasse AW, Hamelers HV, Buisman CJ (2008) Hydrogen production with a microbial biocathode. Environ Sci Technol 42:629–634PubMedCrossRefGoogle Scholar
  55. Rozendal RA, Leone E, Keller J, Rabaey K (2009) Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system. Electrochem Commun 11:1752–1755CrossRefGoogle Scholar
  56. Sakai S, Yagishita T (2007) Microbial production of hydrogen and ethanol from glycerol-containing wastes discharged from a biodiesel fuel production plant in a bioelectrochemical reactor with thionine. Biotechnol Bioeng 98:340–348PubMedCrossRefGoogle Scholar
  57. Shi L, Squier TC, Zachara JM, Fredrickson JK (2007) Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes. Mol Microbiol 65:12–20Google Scholar
  58. Strycharz SM, Woodard TL, Johnson JP, Nevin KP, Sanford RA, Loffler FE, Lovley DR (2008) Graphite electrode as a sole electron donor for reductive dechlorination of tetrachlorethene by Geobacter lovleyi. Appl Environ Microbiol 74:5943–5947PubMedCentralPubMedCrossRefGoogle Scholar
  59. Strycharz SM, Glaven RH, Coppi MV, Gannon SM, Perpetua LA, Liu A, Nevin KP, Lovley DR (2011) Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens. Bioelectrochemistry 80:142–150PubMedCrossRefGoogle Scholar
  60. Strycharz-Glaven SM, Tender LM (2012) Study of the mechanism of catalytic activity of G. sulfurreducens biofilm anodes during biofilm growth. ChemSusChem 5:1106–1118Google Scholar
  61. Summers ZM, Fogarty HE, Leang C, Franks AE, Malvankar NS, Lovley DR (2010) Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330:1413–1415PubMedCrossRefGoogle Scholar
  62. TerAvest MA, Li Z, Angenent LT (2011) Bacteria-based biocomputing with cellular computing circuits to sense, decide, signal, and act. Energy Environ Sci 4:4907–4916CrossRefGoogle Scholar
  63. TerAvest MA, Rosenbaum MA, Kotloski NJ, Gralnick JA, Angenent LT (2013) Oxygen allows Shewanella oneidensis MR-1 to overcome mediator washout in a continuously fed bioelectrochemical system. Biotechnol Bioeng in print. doi:10.1002/bit.25128
  64. Thomas AW, Garner LE, Nevin KP, Woodard TL, Franks AE, Lovley DR, Sumner JJ, Sund CJ, Bazan GC (2013a) A lipid membrane intercalating conjugated oligoelectrolyte enables electrode driven succinate production in Shewanella. Energy Environ Sci 6:1761–1765CrossRefGoogle Scholar
  65. Thomas YRJ, Picot M, Carer A, Berder O, Sentieys O, Barriere F (2013b) A single sediment-microbial fuel cell powering a wireless telecommunication system. J Power Sources 241:703–708CrossRefGoogle Scholar
  66. Tugtas AE, Cavdar P, Calli B (2013) Bio-electrochemical post-treatment of anaerobically treated landfill leachate. Bioresour Technol 128:266–272PubMedCrossRefGoogle Scholar
  67. Venkataraman A, Rosenbaum MA, Perkins SD, Werner JJ, Angenent LT (2011) Metabolite-based mutualism between Pseudomonas aeruginosa PA14 and Enterobacter aerogenes enhances current generation in bioelectrochemical systems. Energy Environ Sci 4:4550–4559CrossRefGoogle Scholar
  68. Verstraete W, Wittelbolle L, Heylen K, Vanparys B, de Vos P, van de Wiele T, Boon N (2007) Microbial resource management: the road to go for environmental biotechnology. Eng Life Sci 7:117–126CrossRefGoogle Scholar
  69. Wang X, Gao N, Zhou Q (2013) Concentration responses of toxicity sensor with Shewanella oneidensis MR-1 growing in bioelectrochemical systems. Biosens Bioelectron 43:264–267PubMedCrossRefGoogle Scholar
  70. Xie X, Hu L, Pasta M, Wells GF, Kong D, Criddle CS, Cui Y (2011) Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells. Nano Lett 11:291–296PubMedCrossRefGoogle Scholar
  71. Yates MD, Kiely PD, Call DF, Rismani-Yazdi H, Bibby K, Peccia J, Regan JM, Logan BE (2012) Convergent development of anodic bacterial communities in microbial fuel cells. Isme J 6:2002–2013PubMedCrossRefGoogle Scholar
  72. Zhang B, Zhao H, Zhou S, Shi C, Wang C, Ni J (2009) A novel UASB-MFC-BAF integrated system for high strength molasses wastewater treatment and bioelectricity generation. Bioresour Technol 100:5687–5693PubMedCrossRefGoogle Scholar
  73. Zhang T, Gannon SM, Nevin KP, Franks AE, Lovley DR (2010) Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor. Environ Microbiol 12:1011–1020PubMedCrossRefGoogle Scholar
  74. Zhang F, Tian L, He Z (2011) Powering a wireless temperature sensor using sediment microbial fuel cells with vertical arrangement of electrodes. J Power Sources 196:9568–9573CrossRefGoogle Scholar
  75. Zhao F, Harnisch F, Schröder U, Scholz F, Bogdanoff P, Herrmann I (2005) Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochem Commun 7:1405–1410CrossRefGoogle Scholar
  76. Zhou MH, Chi ML, Luo JM, He HH, Jin T (2011) An overview of electrode materials in microbial fuel cells. J Power Sources 196:4427–4435CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of Applied Microbiology — Microbial ElectrocatalysisRWTH Aachen UniversityAachenGermany
  2. 2.Department of Microbiology — Environmental Microbiology, Faculty of Science, Technology and EngineeringLa Trobe UniversityMelbourneAustralia

Personalised recommendations