Applied Microbiology and Biotechnology

, Volume 98, Issue 3, pp 1105–1118 | Cite as

Characterization of Bacillus spp. strains for use as probiotic additives in pig feed

  • Nadja Larsen
  • Line Thorsen
  • Elmer Nayra Kpikpi
  • Birgitte Stuer-Lauridsen
  • Mette Dines Cantor
  • Bea Nielsen
  • Elke Brockmann
  • Patrick M. F. Derkx
  • Lene Jespersen
Biotechnological products and process engineering


Bacillus spp. are commonly used as probiotic species in the feed industry, however, their benefits need to be confirmed. This study describes a high throughput screening combined with the detailed characterization of endospore-forming bacteria with the aim to identify new Bacillus spp. strains for use as probiotic additives in pig feed. A total of 245 bacterial isolates derived from African fermented food, feces and soil were identified by 16S rRNA gene sequencing and screened for antimicrobial activity and growth in the presence of antibiotics, bile salts and at pH 4.0. Thirty-three Bacillus spp. isolates with the best characteristics were identified by gyrB and rpoB gene sequencing as B. amyloliquefaciens subsp. plantarum, B. amyloliquefaciens subsp. amyloliquefaciens, B. subtilis subsp. subtilis, B. licheniformis, B. mojavensis, B. pumilus and B. megaterium. These isolates were further investigated for their activity against the pathogenic bacteria, antibiotic susceptibility, sporulation rates, biofilm formation and production of glycosyl hydrolytic enzymes. Additionally, ten selected isolates were assessed for heat resistance of spores and the effect on porcine epithelial cells IPEC-J2. Isolates of B. amyloliquefaciens, B. subtilis and B. mojavensis, showed the best overall characteristics and, therefore, potential for usage as probiotic additives in feed. A large number of taxonomically diverse strains made it possible to reveal species and subspecies-specific trends, contributing to our understanding of the probiotic potential of Bacillus species.


Bacillus Probiotic Pig feed Screening 



This work was financially supported by Chr. Hansen A/S (Denmark) and the Danish International Development Agency (DANIDA) Seedfood project. The excellent assistance of laboratory technicians Abdallah Albayasli, Nina Milora and Jonna Nielsen (Chr. Hansen A/S) is gratefully acknowledged. Thanks to Animal Health and Veterinary Laboratory Agencies (AHVLA, UK) as well as Royal Holloway University of London for supplying selected Bacillus strains.

Supplementary material

253_2013_5343_MOESM1_ESM.pdf (33 kb)
ESM 1 (PDF 33 kb)


  1. Abou-Taleb KAA, Mashhoor WA, Nasr SA, Sharaf MS, Abdel-Azeem HHM (2009) Nutritional and environmental factors affecting cellulase production by two strains of cellulolytic Bacilli. Australian. J Basic Applied Sci 3:2429–2436Google Scholar
  2. Abriouel H, Franz CM, Ben ON, Galvez A (2011) Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev 35:201–232. doi: 10.1111/j.1574-6976.2010.00244.x PubMedCrossRefGoogle Scholar
  3. Adimpong DB, Sorensen KI, Thorsen L, Stuer-Lauridsen B, Abdelgadir WS, Nielsen DS, Derkx PM, Jespersen L (2012) Antimicrobial susceptibility, characterization of bacitracin operon and bacitracin biosynthesis of Bacillus spp. strains isolated from primary starters for African traditional bread production. Appl Environ Microbiol 78:7903–7914. doi: 10.1128/AEM.00730-12 PubMedCentralPubMedCrossRefGoogle Scholar
  4. Alexopoulos C, Georgoulakis IE, Tzivara A, Kyriakis CS, Govaris A, Kyriakis SC (2004) Field evaluation of the effect of a probiotic-containing Bacillus licheniformis and Bacillus subtilis spores on the health status, performance, and carcass quality of grower and finisher pigs. J Vet Med A Physiol Pathol Clin Med 51:306–312. doi: 10.1111/j.1439-0442.2004.00637 PubMedCrossRefGoogle Scholar
  5. Auger S, Ramarao N, Faille C, Fouet A, Aymerich S, Gohar M (2009) Biofilm formation and cell surface properties among pathogenic and nonpathogenic strains of the Bacillus cereus group. Appl Environ Microbiol 75:6616–6618. doi: 10.1128/AEM.00155-09 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Barbosa TM, Serra CR, La Ragione RM, Woodward MJ, Henriques AO (2005) Screening for bacillus isolates in the broiler gastrointestinal tract. Appl Environ Microbiol 71:968–978. doi: 10.1128/AEM.71.2.968-978.2005 PubMedCentralPubMedCrossRefGoogle Scholar
  7. Borriss R, Chen XH, Rueckert C, Blom J, Becker A, Baumgarth B, Fan B, Pukall R, Schumann P, Sproer C, Junge H, Vater J, Puhler A, Klenk HP (2011) Relationship of Bacillus amyloliquefaciens clades associated with strains DSM 7 T and FZB42T: a proposal for Bacillus amyloliquefaciens subsp. amyloliquefaciens subsp. nov. and Bacillus amyloliquefaciens subsp. plantarum subsp. nov. based on complete genome sequence comparisons. Int J Syst Evol Microbiol 61:1786–1801. doi: 10.1099/ijs.0.023267-0 PubMedCrossRefGoogle Scholar
  8. Branda SS, Gonzalez-Pastor JE, Ben-Yehuda S, Losick R, Kolter R (2001) Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci U S A 98:11621–11626. doi: 10.1073/pnas.191384198 PubMedCentralPubMedCrossRefGoogle Scholar
  9. Clinical and Laboratory Standards Institute (2010) Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria; Approved guideline, 2nd Edition. CLSI document M45-A2 (ISBN 1-56238-732-4)Google Scholar
  10. Compaore CS, Nielsen DS, Sawadogo-Lingani H, Berner TS, Nielsen FK, Adimpong DB, Diawara B, Ouedraogo GA, Jakobsen M, Thorsen L (2013) Bacillus amyloliquefaciens susbsp. plantarum strains as potential protective starter cultures for the production of bikalga, an alkaline fermented food. J. Appl. Microbiol Apr 9. doi:  10.1111/jam.12214. [Epub ahead of print]
  11. Cordeiro CAM, Martins MLL, Luciano AB, da Silva RF (2002) Production and properties of xylanase from thermophilic Bacillus sp. Braz Arch Biol Technol 45:413–418. doi: 10.1590/S1516-89132002000600002 CrossRefGoogle Scholar
  12. Cutting SM (2011) Bacillus probiotics. Food Microbiol 28:214–220. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  13. Diaz D (2007) Effect of Bacillus amyloliquefaciens CECT-5940 spores on broiler performance and digestibility. Published online:
  14. Dischinger J, Josten M, Szeka C, Sahl HG, Bierbaum G (2009) Production of the novel two-peptide lantibiotic lichenicidin by Bacillus licheniformis DSM 13. PLoS One 4:e6788. doi: 10.1371/journal.pone.0006788 PubMedCentralPubMedCrossRefGoogle Scholar
  15. Duc LH, Hong HA, Barbosa TM, Henriques AO, Cutting SM (2004) Characterization of Bacillus probiotics available for human use. Appl Environ Microbiol 70:2161–2171. doi: 10.1128/AEM.70.4.2161-2171.2004 PubMedCentralCrossRefGoogle Scholar
  16. EFSA (2008) Scientific Opinion of the Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) on a request from the European Commission on the safety and efficacy of Ecobiol® (Bacillus amyloliquefaciens) as feed additive for chickens for fattening. EFSA Journal 2008 773: 1–13.
  17. EFSA (2010a) EFSA Panel on Biological Hazards (BIOHAZ); Scientific Opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed. EFSA Journal 2010 8:1944.
  18. EFSA (2010b) EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP); Scientific Opinion on the safety and efficacy of Calsporin® (Bacillus subtilis) as a feed additive for piglets on request from the European Commission. EFSA Journal 2010 8:1426.
  19. EFSA (2011a) EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP); Scientific Opinion on the safety and efficacy of BioPlus 2B (Bacillus licheniformis DSM 5749 and Bacillus subtilis DSM 5750) as a feed additive for sows. EFSA Journal 2011 9:2356.
  20. EFSA (2011b) EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP); Technical Guidance on the assessment of the toxigenic potential of Bacillus species used in animal nutrition. EFSA Journal 2011 9:2445.
  21. EFSA (2012) EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP); Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA Journal 2012 10:2740.
  22. Fakhry S, Sorrentini I, Ricca E, De FM, Baccigalupi L (2008) Characterization of spore forming Bacilli isolated from the human gastrointestinal tract. J Appl Microbiol 105:2178–2186. doi: 10.1111/j.1365-2672.2008.03934 PubMedCrossRefGoogle Scholar
  23. Gaggia F, Mattarelli P, Biavati B (2010) Probiotics and prebiotics in animal feeding for safe food production. Int J Food Microbiol 141:S15–S28. doi: 10.1016/j.ijfoodmicro.2010.02.031 PubMedCrossRefGoogle Scholar
  24. Guo X, Li D, Lu W, Piao X, Chen X (2006) Screening of Bacillus strains as potential probiotics and subsequent confirmation of the in vivo effectiveness of Bacillus subtilis MA139 in pigs. Antonie Van Leeuwenhoek 90:139–146. doi: 10.1007/s10482-006-9067-9 PubMedCrossRefGoogle Scholar
  25. Hoa NT, Baccigalupi L, Huxham A, Smertenko A, Van PH, Ammendola S, Ricca E, Cutting AS (2000) Characterization of Bacillus species used for oral bacteriotherapy and bacterioprophylaxis of gastrointestinal disorders. Appl Environ Microbiol 66:5241–5247. doi: 10.1128/AEM.66.12.5241-5247.2000 PubMedCentralPubMedCrossRefGoogle Scholar
  26. Hong HA, Duc LH, Cutting SM (2005) The use of bacterial spore formers as probiotics. FEMS Microbiol Rev 29:813–835. doi: 10.1016/j.femsre.2004.12.001 PubMedCrossRefGoogle Scholar
  27. Hong HA, Khaneja R, Tam NM, Cazzato A, Tan S, Urdaci M, Brisson A, Gasbarrini A, Barnes I, Cutting SM (2009a) Bacillus subtilis isolated from the human gastrointestinal tract. Res Microbiol 160:134–143. doi: 10.1016/j.resmic.2008.11.002 PubMedCrossRefGoogle Scholar
  28. Hong HA, To E, Fakhry S, Baccigalupi L, Ricca E, Cutting SM (2009b) Defining the natural habitat of Bacillus spore-formers. Res Microbiol 160:375–379. doi: 10.1016/j.resmic.2009.06.006 PubMedCrossRefGoogle Scholar
  29. Hosoi T, Hirose R, Saegusa S, Ametani A, Kiuchi K, Kaminogawa S (2003) Cytokine responses of human intestinal epithelial-like Caco-2 cells to the nonpathogenic bacterium Bacillus subtilis (natto). Int J Food Microbiol 82:255–264. doi: 10.1016/S0168-1605(02)00311-2 PubMedCrossRefGoogle Scholar
  30. Huang CH, Chang MT, Huang L, Chu WS (2012) Development of a novel PCR assay based on the gyrase B gene for species identification of Bacillus licheniformis. Mol Cell Probes 26:215–217. doi: 10.1016/j.mcp.2012.05.001 PubMedCrossRefGoogle Scholar
  31. Kabore D, Thorsen L, Nielsen DS, Berner TS, Sawadogo-Lingani H, Diawara B, Dicko MH, Jakobsen M (2012) Bacteriocin formation by dominant aerobic sporeformers isolated from traditional maari. Int J Food Microbiol 154:10–18. doi: 10.1016/j.ijfoodmicro.2011.12.003 PubMedCrossRefGoogle Scholar
  32. Ki JS, Zhang W, Qian PY (2009) Discovery of marine Bacillus species by 16S rRNA and rpoB comparisons and their usefulness for species identification. J Microbiol Methods 77:48–57. doi: 10.1016/j.mimet.2009.01.003 PubMedCrossRefGoogle Scholar
  33. Kort R, O'Brien AC, van Stokkum IH, Oomes SJ, Crielaard W, Hellingwerf KJ, Brul S (2005) Assessment of heat resistance of bacterial spores from food product isolates by fluorescence monitoring of dipicolinic acid release. Appl Environ Microbiol 71:3556–3564. doi: 10.1128/AEM.71.7.3556-3564.2005 PubMedCentralPubMedCrossRefGoogle Scholar
  34. La Ragione RM, Woodward MJ (2003) Competitive exclusion by Bacillus subtilis spores of Salmonella enterica serotype Enteritidis and Clostridium perfringens in young chickens. Vet Microbiol 94:245–256. doi: 10.1016/S0378-1135(03)00077-4 PubMedCrossRefGoogle Scholar
  35. Leser TD, Knarreborg A, Worm J (2008) Germination and outgrowth of Bacillus subtilis and Bacillus licheniformis spores in the gastrointestinal tract of pigs. J Appl Microbiol 104:1025–1033. doi: 10.1111/j.1365-2672.2007.03633.x PubMedCrossRefGoogle Scholar
  36. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar Buchner A, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371. doi: 10.1093/nar/gkh293 PubMedCentralPubMedCrossRefGoogle Scholar
  37. Malanicheva IA, Kozlov DG, Sumarukova IG, Efremenkova OV, Zenkova VA, Katrukha GS, Reznikova MI, Tarasova OD, Sineokii SP, El'-Registan GI (2012) Antimicrobial activity of Bacillus megaterium strains. Microbiology 81:178–185. doi: 10.1134/S0026261712020063 CrossRefGoogle Scholar
  38. Meerak J, Iida H, Watanabe Y, Miyashita M, Sato H, Nakagawa Y, Tahara Y (2007) Phylogeny of gamma-polyglutamic acid-producing Bacillus strains isolated from fermented soybean foods manufactured in Asian countries. J Gen Appl Microbiol 53:315–323. doi: 10.2323/jgam.53.315 PubMedCrossRefGoogle Scholar
  39. Monteiro SM, Clemente JJ, Henriques AO, Gomes RJ, Carrondo MJ, Cunha AE (2005) A procedure for high-yield spore production by Bacillus subtilis. Biotechnol Prog 21:1026–1031. doi: 10.1021/bp050062z PubMedCrossRefGoogle Scholar
  40. Novak KN, Davis E, Wehnes CA, Shields DR, Coalson JA, Smith AH, Rehberger TG (2012) Effect of supplementation with an electrolyte containing a Bacillus-based direct-fed microbial on immune development in dairy calves. Res Vet Sci 92:427–434. doi: 10.1016/j.rvsc.2011.04.008 PubMedCrossRefGoogle Scholar
  41. Pattnaik P, Kaushik JK, Grover S, Batish VK (2001) Purification and characterization of a bacteriocin-like compound (Lichenin) produced anaerobically by Bacillus licheniformis isolated from water buffalo. J Appl Microbiol 91:636–645. doi: 10.1046/j.1365-2672.2001.01429.x PubMedCrossRefGoogle Scholar
  42. Pedersen LL, Owusu-Kwarteng J, Thorsen L, Jespersen L (2012) Biodiversity and probiotic potential of yeasts isolated from Fura, a West African spontaneously fermented cereal. Int J Food Microbiol 159:144–151. doi: 10.1016/j.ijfoodmicro.2012.08.016 PubMedCrossRefGoogle Scholar
  43. Rooney AP, Price NP, Ehrhardt C, Swezey JL, Bannan JD (2009) Phylogeny and molecular taxonomy of the Bacillus subtilis species complex and description of Bacillus subtilis subsp. inaquosorum subsp. nov. Int J Syst Evol Microbiol 59:2429–2436. doi: 10.1099/ijs.0.009126-0 PubMedCrossRefGoogle Scholar
  44. Ruckert C, Blom J, Chen X, Reva O, Borriss R (2011) Genome sequence of B. amyloliquefaciens type strain DSM7(T) reveals differences to plant-associated B. amyloliquefaciens FZB42. J Biotechnol 155:78–85. doi: 10.1016/j.jbiotec.2011.01.006 PubMedCrossRefGoogle Scholar
  45. Schallmey M, Singh A, Ward OP (2004) Developments in the use of Bacillus species for industrial production. Can J Microbiol 50:1–17. doi: 10.1139/w03-076 PubMedCrossRefGoogle Scholar
  46. Schierack P, Nordhoff M, Pollmann M, Weyrauch KD, Amasheh S, Lodemann U, Jores J, Tachu B, Kleta S, Blikslager A, Tedin K, Wieler LH (2006) Characterization of a porcine intestinal epithelial cell line for in vitro studies of microbial pathogenesis in swine. Histochem. Cell Biol 125:293–305. doi: 10.1007/s00418-005-0067-z Google Scholar
  47. Sorokulova IB, Pinchuk IV, Denayrolles M, Osipova IG, Huang JM, Cutting SM, Urdaci MC (2008) The safety of two Bacillus probiotic strains for human use. Dig Dis Sci 53:954–963. doi: 10.1007/s10620-007-9959-1 PubMedCrossRefGoogle Scholar
  48. Sun P, Wang JQ, Zhang HT (2010) Effects of Bacillus subtilis natto on performance and immune function of preweaning calves. J Dairy Sci 93:5851–5855. doi: 10.3168/jds.2010-3263 PubMedCrossRefGoogle Scholar
  49. Travers RS, Martin PA, Reichelderfer CF (1987) Selective process for efficient isolation of soil Bacillus spp. Appl. Environ. Microbiol 53:1263–1266. PMCID: PMC203852Google Scholar
  50. Wang LT, Lee FL, Tai CJ, Kasai H (2007) Comparison of gyrB gene sequences, 16S rRNA gene sequences and DNA–DNA hybridization in the Bacillus subtilis group. Int J Syst Evol Microbiol 57:1846–1850. doi: 10.1099/ijs.0.64685-0 PubMedCrossRefGoogle Scholar
  51. Williams LD, Burdock GA, Jimenez G, Castillo M (2009) Literature review on the safety of Toyocerin, a non-toxigenic and non-pathogenic Bacillus cereus var. toyoi preparation. Regul ToxicolPharmacol 55:236–246. doi: 10.1016/j.yrtph.2009.07.009 CrossRefGoogle Scholar
  52. Xu H, He X, Gou J, Lee HY, Ahn J (2009) Kinetic evaluation of physiological heterogeneity in bacterial spores during thermal inactivation. J Gen Appl Microbiol 55:295–299. doi: 10.2323/jgam.55.295 PubMedCrossRefGoogle Scholar
  53. Yu Q, Wang Z, Yang Q (2012) Lactobacillus amylophilus D14 protects tight junction from enteropathogenic bacteria damage in Caco-2 cells. J Dairy Sci 95:5580–5587. doi: 10.3168/jds.2012-5540 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nadja Larsen
    • 1
  • Line Thorsen
    • 1
  • Elmer Nayra Kpikpi
    • 2
  • Birgitte Stuer-Lauridsen
    • 3
  • Mette Dines Cantor
    • 3
  • Bea Nielsen
    • 3
  • Elke Brockmann
    • 3
  • Patrick M. F. Derkx
    • 3
  • Lene Jespersen
    • 1
  1. 1.Faculty of Science, Department of Food ScienceUniversity of CopenhagenCopenhagenDenmark
  2. 2.Department of Biochemistry and BiotechnologyKwame Nkrumah University of Science and TechnologyKumasiGhana
  3. 3.Chr. Hansen A/S, InnovationHoersholmDenmark

Personalised recommendations