Advertisement

Applied Microbiology and Biotechnology

, Volume 97, Issue 24, pp 10255–10262 | Cite as

ω3 fatty acid desaturases from microorganisms: structure, function, evolution, and biotechnological use

  • Mingxuan Wang
  • Haiqin Chen
  • Zhennan Gu
  • Hao Zhang
  • Wei Chen
  • Yong Q. Chen
Mini-Review

Abstract

The biosynthesis of very-long-chain polyunsaturated fatty acids involves an alternating process of fatty acid desaturation and elongation catalyzed by complex series of enzymes. ω3 desaturase plays an important role in converting ω6 fatty acids into ω3 fatty acids. Genes for this desaturase have been identified and characterized in a wide range of microorganisms, including cyanobacteria, yeasts, molds, and microalgae. Like all fatty acid desaturases, ω3 desaturase is structurally characterized by the presence of three highly conserved histidine-rich motifs; however, unlike some desaturases, it lacks a cytochrome b5-like domain. Understanding the structure, function, and evolution of ω3 desaturases, particularly their substrate specificities in the biosynthesis of very-long-chain polyunsaturated fatty acids, lays the foundation for potential production of various ω3 fatty acids in transgenic microorganisms.

Keywords

Polyunsaturated fatty acids (PUFAs) ω3 desaturase Lipid biochemistry Substrate specificity Biotechnology 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 21276108, 31271812, 31171636), the National High Technology Research and Development Program of China (2011AA100905), the National Science Fund for Distinguished Young Scholars (31125021), the National Basic Research Program 973 of China (2012CB720802), the 111 project B07029, and the Fundamental Research Funds for the Central Universities (No. JUSRP51320B).

References

  1. Aguilar PS, de Mendoza D (2006) Control of fatty acid desaturation: a mechanism conserved from bacteria to humans. Mol Microbiol 62(6):1507–1514. doi: 10.1111/j.1365-2958.2006.05484.x PubMedCrossRefGoogle Scholar
  2. Aitzetmüller K, Tsevegsüren N (1994) Seed fatty acids, «front-end»-desaturases and chemotaxonomy—a case study in the Ranunculaceae. J Plant Physiol 143(4–5):538–543. doi: 10.1007/BF00039536 CrossRefGoogle Scholar
  3. Ando A, Sumida Y, Negoro H, Suroto DA, Ogawa J, Sakuradani E, Shimizu S (2009) Establishment of Agrobacterium tumefaciens-mediated transformation of an oleaginous fungus, Mortierella alpina 1S-4, and its application for eicosapentaenoic acid producer breeding. Appl Environ Microbiol 75(17):5529–5535. doi: 10.1128/AEM.00648-09 PubMedCrossRefGoogle Scholar
  4. Berka RM, Grigoriev IV, Otillar R, Salamov A, Grimwood J, Reid I, Ishmael N, John T, Darmond C, Moisan MC, Henrissat B, Coutinho PM, Lombard V, Natvig DO, Lindquist E, Schmutz J, Lucas S, Harris P, Powlowski J, Bellemare A, Taylor D, Butler G, de Vries RP, Allijn IE, van den Brink J, Ushinsky S, Storms R, Powell AJ, Paulsen IT, Elbourne LD, Baker SE, Magnuson J, Laboissiere S, Clutterbuck AJ, Martinez D, Wogulis M, de Leon AL, Rey MW, Tsang A (2011) Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Nat Biotechnol 29(10):922–927. doi: 10.1038/nbt.1976 PubMedCrossRefGoogle Scholar
  5. Carlson SE, Werkman SH, Peeples JM, Cooke RJ, Tolley EA (1993) Arachidonic acid status correlates with first year growth in preterm infants. Proc Natl Acad Sci U S A 90(3):1073–1077. doi: 10.1073/pnas.90.3.1073 PubMedCrossRefGoogle Scholar
  6. Chen YQ, Berquin IM, Daniel LW, Edwards IJ, O’Flaherty JT, Thomas MJ, Tooze JA, Wykle B (2006) Omega-3 fatty acids and cancer risk. JAMA: J Am Med Assoc 296(3):278–282. doi: 10.1001/jama.296.3.282-a Google Scholar
  7. Chen H, Gu Z, Zhang H, Wang M, Chen W, Lowther WT, Chen YQ (2013) Expression and purification of integral membrane fatty acid desaturases. PLoS ONE 8(3):e58139. doi: 10.1371/journal.pone.0058139 PubMedCrossRefGoogle Scholar
  8. Connor KM, SanGiovanni JP, Lofqvist C, Aderman CM, Chen J, Higuchi A, Hong S, Pravda EA, Majchrzak S, Carper D, Hellstrom A, Kang JX, Chew EY, Salem N, Serhan CN, Smith LEH (2007) Increased dietary intake of [omega]-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nat Med 13(7):868–873. doi: 10.1038/nm1591 PubMedCrossRefGoogle Scholar
  9. Damude HG, Zhang H, Farrall L, Ripp KG, Tomb JF, Hollerbach D, Yadav NS (2006) Identification of bifunctional delta12/omega3 fatty acid desaturases for improving the ratio of omega3 to omega6 fatty acids in microbes and plants. Proc Natl Acad Sci U S A 103(25):9446–9451. doi: 10.1073/pnas.0511079103 PubMedCrossRefGoogle Scholar
  10. Diaz AR, MaC M, Vila AJ, de Mendoza D (2002) Membrane topology of the acyl-lipid desaturase from Bacillus subtilis. J Biol Chem 277(50):48099–48106. doi: 10.1074/jbc.M208960200 PubMedCrossRefGoogle Scholar
  11. Dyer JM, Chapital DC, Kuan JC, Mullen RT, Turner C, McKeon TA, Pepperman AB (2002) Molecular analysis of a bifunctional fatty acid conjugase/desaturase from tung. Implications for the evolution of plant fatty acid diversity. Plant Physiol 130(4):2027–2038. doi: 10.1104/pp. 102.010835 PubMedCrossRefGoogle Scholar
  12. Dyer DH, Lyle KS, Rayment I, Fox BG (2005) X-ray structure of putative acyl-ACP desaturase DesA2 from Mycobacterium tuberculosis H37Rv. Protein Sci 14(6):1508–1517. doi: 10.1110/ps.041288005 PubMedCrossRefGoogle Scholar
  13. Gagne SJ, Reed DW, Gray GR, Covello PS (2009) Structural control of chemoselectivity, stereoselectivity, and substrate specificity in membrane-bound fatty acid acetylenases and desaturases. Biochemistry (Mosc) 48(51):12298–12304. doi: 10.1021/bi901605d CrossRefGoogle Scholar
  14. Ge Y, Wang X, Chen Z, Landman N, Lo EH, Kang JX (2002) Gene transfer of the Caenorhabditis elegans n−3 fatty acid desaturase inhibits neuronal apoptosis. J Neurochem 82(6):1360–1366. doi: 10.1046/j.1471-4159.2002.01077.x PubMedCrossRefGoogle Scholar
  15. Gill I, Valivety R (1997) Polyunsaturated fatty acids, part 1: occurrence, biological activities and applications. Trends Biotechnol 15(10):401–409. doi: 10.1016/S0167-7799(97)01076-7 PubMedCrossRefGoogle Scholar
  16. Guy JE, Whittle E, Kumaran D, Lindqvist Y, Shanklin J (2007) The crystal structure of the ivy Delta4-16:0-ACP desaturase reveals structural details of the oxidized active site and potential determinants of regioselectivity. J Biol Chem 282(27):19863–19871. doi: 10.1074/jbc.M702520200 PubMedCrossRefGoogle Scholar
  17. Heilmann I, Mekhedov S, King B, Browse J, Shanklin J (2004) Identification of the Arabidopsis palmitoyl-monogalactosyldiacylglycerol delta7-desaturase gene FAD5, and effects of plastidial retargeting of Arabidopsis desaturases on the fad5 mutant phenotype. Plant Physiol 136(4):4237–4245. doi: 10.1104/pp. 104.052951 PubMedCrossRefGoogle Scholar
  18. Hoffmann M, Hornung E, Busch S, Kassner N, Ternes P, Braus GH, Feussner I (2007) A small membrane-peripheral region close to the active center determines regioselectivity of membrane-bound fatty acid desaturases from Aspergillus nidulans. J Biol Chem 282(37):26666–26674. doi: 10.1074/jbc.M705068200 PubMedCrossRefGoogle Scholar
  19. Hongsthong A, Subudhi S, Sirijuntarat M, Cheevadhanarak S (2004) Mutation study of conserved amino acid residues of Spirulina delta 6-acyl-lipid desaturase showing involvement of histidine 313 in the regioselectivity of the enzyme. Appl Microbiol Biotechnol 66(1):74–84. doi: 10.1007/s00253-004-1655-x PubMedCrossRefGoogle Scholar
  20. Jareonkitmongkol S, Kawashima H, Shirasaka N, Shimizu S, Yamada H (1992) Production of dihomo-γ-linolenic acid by a Δ5-desaturase-defective mutant of Mortierella alpina 1S-4. Appl Environ Microbiol 58(7):2196–2200PubMedGoogle Scholar
  21. Jia Q, Lupton JR, Smith R, Weeks BR, Callaway E, Davidson LA, Kim W, Fan Y-Y, Yang P, Newman RA, Kang JX, McMurray DN, Chapkin RS (2008) Reduced colitis-associated colon cancer in fat-1 (n−3 fatty acid desaturase) transgenic mice. Cancer Res 68(10):3985–3991. doi: 10.1158/0008-5472.can-07-6251 PubMedCrossRefGoogle Scholar
  22. Kang JX, Wang J, Wu L, Kang ZB (2004) Transgenic mice: Fat-1 mice convert n−6 to n−3 fatty acids. Nature 427(6974):504–504. doi: 10.1038/427504a PubMedCrossRefGoogle Scholar
  23. Lindqvist Y, Huang W, Schneider G, Shanklin J (1996) Crystal structure of delta9 stearoyl-acyl carrier protein desaturase from castor seed and its relationship to other di-iron proteins. EMBO J 15(16):4081–4092PubMedGoogle Scholar
  24. Liu HL, Yin ZJ, Xiao L, Xu YN, Qu LQ (2012) Identification and evaluation of ω-3 fatty acid desaturase genes for hyperfortifying α-linolenic acid in transgenic rice seed. J Exp Bot 63(8):3279–3287. doi: 10.1093/jxb/ers051 PubMedCrossRefGoogle Scholar
  25. López Alonso D, García-Maroto F, Rodríguez-Ruiz J, Garrido JA, Vilches MA (2003) Evolution of the membrane-bound fatty acid desaturases. Biochem Syst Ecol 31(10):1111–1124. doi: 10.1016/s0305-1978(03)00041-3 CrossRefGoogle Scholar
  26. Los DA, Murata N (1998) Structure and expression of fatty acid desaturases. Biochim Biophys Acta 1394(1):3–15PubMedCrossRefGoogle Scholar
  27. Lu Y, Nie D, Witt WT, Chen Q, Shen M, Xie H, Lai L, Dai Y, Zhang J (2008) Expression of the fat-1 gene diminishes prostate cancer growth in vivo through enhancing apoptosis and inhibiting GSK-3β phosphorylation. Mol Cancer Ther 7(10):3203–3211. doi: 10.1158/1535-7163.mct-08-0494 PubMedCrossRefGoogle Scholar
  28. Man WC, Miyazaki M, Chu K, Ntambi JM (2006) Membrane topology of mouse stearoyl-CoA desaturase 1. J Biol Chem 281(2):1251–1260. doi: 10.1074/jbc.M508733200 PubMedCrossRefGoogle Scholar
  29. Meesapyodsuk D, Qiu X (2012) The front-end desaturase: structure, function, evolution and biotechnological use. Lipids 47(3):227–237. doi: 10.1007/s11745-011-3617-2 PubMedCrossRefGoogle Scholar
  30. Meesapyodsuk D, Reed DW, Savile CK, Buist PH, Ambrose SJ, Covello PS (2000) Characterization of the regiochemistry and cryptoregiochemistry of a Caenorhabditis elegans fatty acid desaturase (FAT-1) expressed in Saccharomyces cerevisiae. Biochemistry (Mosc) 39(39):11948–11954. doi: 10.1021/bi000756a CrossRefGoogle Scholar
  31. Mitchell AG, Martin CE (1995) A novel cytochrome B(5)-like domain is linked to the carboxyl-terminus of the Saccharomyces cerevisiae delta-9 fatty-acid desaturase. J Biol Chem 270(50):29766–29772. doi: 10.1074/jbc.270.50.29766 PubMedCrossRefGoogle Scholar
  32. Na-Ranong S, Laoteng K, Kittakoop P, Tanticharoen M, Cheevadhanarak S (2006) Targeted mutagenesis of a fatty acid Delta6-desaturase from Mucor rouxii: role of amino acid residues adjacent to histidine-rich motif II. Biochem Biophys Res Commun 339(4):1029–1034. doi: 10.1016/j.bbrc.2005.11.115 PubMedCrossRefGoogle Scholar
  33. Oura T, Kajiwara S (2004) Saccharomyces kluyveri FAD3 encodes an omega3 fatty acid desaturase. Microbiology 150(Pt 6):1983–1990. doi: 10.1099/mic.0.27049-0 PubMedCrossRefGoogle Scholar
  34. Oura T, Kajiwara S (2008) Substrate specificity and regioselectivity of Δ12 and ω3 fatty acid desaturases from Saccharomyces kluyveri. Biosci Biotechnol Biochem 72(12):3174–3179. doi: 10.1271/bbb.80361 PubMedCrossRefGoogle Scholar
  35. Pereira SL, Leonard AE, Mukerji P (2003) Recent advances in the study of fatty acid desaturases from animals and lower eukaryotes. Prostaglandins Leukot Essent Fatty Acids 68(2):97–106. doi: 10.1016/S0952-3278(02)00259-4 PubMedCrossRefGoogle Scholar
  36. Pereira SL, Huang YS, Bobik EG, Kinney AJ, Stecca KL, Packer JC, Mukerji P (2004) A novel omega3-fatty acid desaturase involved in the biosynthesis of eicosapentaenoic acid. Biochem J 378(Pt 2):665–671. doi: 10.1042/BJ20031319 PubMedCrossRefGoogle Scholar
  37. Petrie JR, Shrestha P, Zhou X-R, Mansour MP, Liu Q, Belide S, Nichols PD, Singh SP (2012) Metabolic engineering plant seeds with fish oil-like levels of DHA. PLoS ONE 7(11):e49165. doi: 10.1371/journal.pone.0049165 PubMedCrossRefGoogle Scholar
  38. Qiu X, Hong H, Datla N, MacKenzie SL, Taylor DC, Thomas TL (2002) Expression of borage Δ6 desaturase in Saccharomyces cerevisiae and oilseed crops. Can J Bot 80(1):42–49. doi: 10.1139/b01-130 CrossRefGoogle Scholar
  39. Racine RA, Deckelbaum RJ (2007) Sources of the very-long-chain unsaturated omega-3 fatty acids: eicosapentaenoic acid and docosahexaenoic acid. Curr Opin Clin Nutr Metab Care 10(2):123–128. doi: 10.1097/MCO.0b013e3280129652 PubMedCrossRefGoogle Scholar
  40. Ratledge C, Wynn JP (2002) The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol 51:1–51. doi: 10.1016/S0065-2164(02)51000-5 PubMedCrossRefGoogle Scholar
  41. Ruiz-Lopez N, Haslam RP, Usher SL, Napier JA, Sayanova O (2013) Reconstitution of EPA and DHA biosynthesis in Arabidopsis: Iterative metabolic engineering for the synthesis of n−3 LC-PUFAs in transgenic plants. Metab Eng 17:30–41. doi: 10.1016/j.ymben.2013.03.001 PubMedCrossRefGoogle Scholar
  42. Sakamoto T, Los DA, Higashi S, Wada H, Nishida I, Ohmori M, Murata N (1994) Cloning of ω3 desaturase from cyanobacteria and its use in altering the degree of membrane-lipid unsaturation. Plant Mol Biol 26(1):249–263PubMedCrossRefGoogle Scholar
  43. Sakuradani E, Hirano Y, Kamada N, Nojiri M, Ogawa J, Shimizu S (2004a) Improvement of arachidonic acid production by mutants with lower n−3 desaturation activity derived from Mortierella alpina. Appl Microbiol Biotechnol 66(3):243–248. doi: 10.1007/s00253-004-1682-7 PubMedCrossRefGoogle Scholar
  44. Sakuradani E, Hirano Y, Kamada N, Nojiri M, Ogawa J, Shimizu S (2004b) Improvement of arachidonic acid production by mutants with lower n−3 desaturation activity derived from Mortierella alpina 1S-4. Appl Microbiol Biotechnol 66(3):243–248. doi: 10.1007/s00253-004-1682-7 PubMedCrossRefGoogle Scholar
  45. Sakuradani E, Abe T, Iguchi K, Shimizu S (2005) A novel fungal omega3-desaturase with wide substrate specificity from arachidonic acid-producing Mortierella alpina 1S-4. Appl Microbiol Biotechnol 66(6):648–654. doi: 10.1007/s00253-004-1760-x PubMedCrossRefGoogle Scholar
  46. Sakuradani E, Abe T, Shimizu S (2009) Identification of mutation sites on omega3 desaturase genes from Mortierella alpina 1S-4 mutants. J Biosci Bioeng 107(1):7–9. doi: 10.1016/j.jbiosc.2008.08.001 PubMedCrossRefGoogle Scholar
  47. Shanklin J, Whittle E, Fox BG (1994) Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry (Mosc) 33(43):12787–12794. doi: 10.1021/bi00209a009 CrossRefGoogle Scholar
  48. Shanklin J, Guy JE, Mishra G, Lindqvist Y (2009) Desaturases: emerging models for understanding functional diversification of diiron-containing enzymes. J Biol Chem 284(28):18559–18563. doi: 10.1074/jbc.R900009200 PubMedCrossRefGoogle Scholar
  49. Shimiziu S, Kawashima H, Shinmen Y, Akimoto K, Yamada H (1988) Production of eicosapentaenoic acid by Mortierella fungi. J Am Oil Chem Soc 65(9):1455–1459. doi: 10.1007/bf02898307 CrossRefGoogle Scholar
  50. Shinmen Y, Shimizu S, Akimoto K, Kawashima H, Yamada H (1989) Production of arachidonic-acid by Mortierella fungi—selection of a potent producer and optimization of culture conditions for large-scale production. Appl Microbiol Biotechnol 31(1):11–16. doi: 10.1007/BF00252518 CrossRefGoogle Scholar
  51. Stukey JE, McDonough VM, Martin CE (1990) The OLE1 gene of Saccharomyces cerevisiae encodes the delta 9 fatty acid desaturase and can be functionally replaced by the rat stearoyl-CoA desaturase gene. J Biol Chem 265(33):20144–20149PubMedGoogle Scholar
  52. Tocher DR, Leaver MJ, Hodgson PA (1998) Recent advances in the biochemistry and molecular biology of fatty acyl desaturases. Prog Lipid Res 37(2–3):73–117. doi: 10.1016/S0163-7827(98)00005-8 PubMedCrossRefGoogle Scholar
  53. van Beilen JB, Penninga D, Witholt B (1992) Topology of the membrane-bound alkane hydroxylase of Pseudomonas oleovorans. J Biol Chem 267(13):9194–9201PubMedGoogle Scholar
  54. Vanden Heuvel JP (2012) Nutrigenomics and Nutrigenetics of ω3 Polyunsaturated Fatty Acids. In: Bouchard C, Ordovas JM (eds) Progress in molecular biology and translational science. vol Volume 108. Academic, pp 75–112Google Scholar
  55. Vanhercke T, Shrestha P, Green AG, Singh SP (2011) Mechanistic and structural insights into the regioselectivity of an Acyl-CoA fatty acid desaturase via directed molecular evolution. J Biol Chem 286(15):12860–12869. doi: 10.1074/jbc.M110.191098 PubMedCrossRefGoogle Scholar
  56. Vrinten P, Hu Z, Munchinsky MA, Rowland G, Qiu X (2005) Two FAD3 desaturase genes control the level of linolenic acid in flax seed. Plant Physiol 139(1):79–87. doi: 10.1104/pp. 105.064451 PubMedCrossRefGoogle Scholar
  57. Wada H, Gombos Z, Murata N (1990) Enhancement of chilling tolerance of a cyanobacterium by genetic manipulation of fatty acid desaturation. Nature 347(6289):200–203. doi: 10.1038/347200a0 PubMedCrossRefGoogle Scholar
  58. Wang L, Chen W, Feng Y, Ren Y, Gu Z, Chen H, Wang H, Thomas MJ, Zhang B, Berquin IM, Li Y, Wu J, Zhang H, Song Y, Liu X, Norris JS, Wang S, Du P, Shen J, Wang N, Yang Y, Wang W, Feng L, Ratledge C, Zhang H, Chen YQ (2011) Genome characterization of the oleaginous fungus Mortierella alpina. PLoS ONE 6(12):e28319. doi: 10.1371/journal.pone.0028319 PubMedCrossRefGoogle Scholar
  59. Xia S-H, Wang J, Kang JX (2005) Decreased n−6/n−3 fatty acid ratio reduces the invasive potential of human lung cancer cells by downregulation of cell adhesion/invasion-related genes. Carcinogenesis 26(4):779–784. doi: 10.1093/carcin/bgi019 PubMedCrossRefGoogle Scholar
  60. Zhang X, Li M, Wei D, Xing L (2008) Identification and characterization of a novel yeast omega3-fatty acid desaturase acting on long-chain n−6 fatty acid substrates from Pichia pastoris. Yeast 25(1):21–27. doi: 10.1002/yea.1546 PubMedCrossRefGoogle Scholar
  61. Zhang P, Liu S, Cong B, Wu G, Liu C, Lin X, Shen J, Huang X (2011) A novel omega-3 fatty acid desaturase involved in acclimation processes of polar condition from Antarctic ice algae Chlamydomonas sp. ICE-L. Mar Biotechnol (NY) 13(3):393–401. doi: 10.1007/s10126-010-9309-8 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mingxuan Wang
    • 1
  • Haiqin Chen
    • 1
    • 2
  • Zhennan Gu
    • 1
    • 2
  • Hao Zhang
    • 1
    • 2
  • Wei Chen
    • 1
    • 2
  • Yong Q. Chen
    • 1
    • 2
    • 3
  1. 1.State Key Laboratory of Food Science and Technology, School of Food Science and TechnologyJiangnan UniversityWuxiPeople’s Republic of China
  2. 2.Synergetic Innovation Center of Food Safety and NutritionWuxiPeople’s Republic of China
  3. 3.Department of Cancer BiologyWake Forest School of MedicineWinston-SalemUSA

Personalised recommendations