Applied Microbiology and Biotechnology

, Volume 98, Issue 7, pp 3181–3190 | Cite as

Biodegradation of ofloxacin, norfloxacin, and ciprofloxacin as single and mixed substrates by Labrys portucalensis F11

  • Catarina L. Amorim
  • Irina S. Moreira
  • Alexandra S. Maia
  • Maria E. Tiritan
  • Paula M. L. CastroEmail author
Environmental biotechnology


Fluoroquinolone (FQ) antibiotics are extensively used both in human and veterinary medicine, and their accumulation in the environment is causing an increasing concern. In this study, the biodegradation of the three most worldwide used FQs, namely ofloxacin, norfloxacin, and ciprofloxacin, by the fluoroorganic-degrading strain Labrys portucalensis F11 was assessed. Degradation occurred when the FQs were supplied individually or as mixture in the culture medium, in the presence of an easily degradable carbon source. Consumption of individual FQs was achieved at different extents depending on its initial concentration, ranging from 0.8 to 30 μM. For the lowest concentration, total uptake of each FQ was observed but stoichiometric fluoride release was not achieved. Intermediate compounds were detected and identified by LC-MS/MS with a quadrupole time of flight detector analyzer. Biotransformation of FQs by L. portucalensis mainly occurred through a cleavage of the piperazine ring and displacement of the fluorine substituent allowing the formation of intermediates with less antibacterial potency. FQ-degrading microorganisms could be useful for application in bioaugmentation processes towards more efficient removal of contaminants in wastewater treatment plants.


Fluoroquinolones Labrys portucalensis F11 Biodegradation Metabolites 



C.L. Amorim, I.S. Moreira, and A.S. Maia wish to acknowledge a research grant from Fundação para a Ciência e Tecnologia (FCT), Portugal (ref. SFRH/BD/47109/2008, SFRH/BPD/87251/2012, and SFRH/BD/86939/2012, respectively) and Fundo Social Europeu (Programa Operacional Potencial Humano, Quadro de Referência Estratégico Nacional). This work was supported by FCT through the projects PTDC/EBB-EBI/111699/2009, CEQUIMED-Pest-OE/SAU/UI4040/2011, and PEst-OE/EQB/LA0016/2011.

Supplementary material

253_2013_5333_MOESM1_ESM.pdf (92 kb)
ESM 1 (PDF 92 kb)


  1. Adjei MD, Deck J, Heinze TM, Freeman JP, Williams AJ, Sutherland JB (2007) Identification of metabolites produced from N-phenylpiperazine by Mycobacterium spp. J Ind Microbiol Biotechnol 34:219–224. doi: 10.1007/s10295-006-0189-x PubMedCrossRefGoogle Scholar
  2. Adjei MD, Heinze TM, Deck J, Freeman JP, Williams AJ, Sutherland JB (2006) Transformation of the antibacterial agent norfloxacin by environmental mycobacteria. Appl Environ Microbiol 72:5790–5793. doi: 10.1128/AEM.03032-05 PubMedCentralPubMedCrossRefGoogle Scholar
  3. Amorim CL, Carvalho MF, Afonso CMM, Castro PML (2013a) Biodegradation of fluoroanilines by the wild strain Labrys portucalensis. Int Biodeterior Biodegrad 80:10–15. doi: 10.1016/j.ibiod.2013.02.001 CrossRefGoogle Scholar
  4. Amorim CL, Ferreira ACS, Carvalho MF, Afonso CMM, Castro PML (2013b) Mineralization of 4-fluorocinnamic acid by a Rhodococcus strain. Appl Microbiol Biotechnol. doi: 10.1007/s00253-013-5149-6 Google Scholar
  5. An T, Yang H, Song W, Li G, Luo H, Cooper WJ (2010) Mechanistic considerations for the advanced oxidation treatment of fluoroquinolone pharmaceutical compounds using TiO2 heterogeneous catalysis. J Phys Chem A 114:2569–2575. doi: 10.1021/jp911349y PubMedCrossRefGoogle Scholar
  6. Babić S, Periša M, Skorić I (2013) Photolytic degradation of norfloxacin, enrofloxacin and ciprofloxacin in various aqueous media. Chemosphere 91:1635–1642. doi: 10.1016/j.chemosphere.2012.12.072 PubMedCrossRefGoogle Scholar
  7. Backhaus T, Scholze M, Grimme L (2000) The single substance and mixture toxicity of quinolones to the bioluminescent bacterium Vibrio fischeri. Aquat Toxicol 49:49–61. doi: 10.1016/S0166-445X(99)00069-7 PubMedCrossRefGoogle Scholar
  8. Brown KD, Kulis J, Thomson B, Chapman TH, Mawhinney DB (2006) Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico. Sci Total Environ 366:772–783. doi: 10.1016/j.scitotenv.2005.10.007 PubMedCrossRefGoogle Scholar
  9. Calza P, Medana C, Carbone F, Giancotti V, Baiocchi C (2008) Characterization of intermediate compounds formed upon photoinduced degradation of quinolones by high-performance liquid chromatography/high-resolution multiple-stage mass spectrometry. Rapid Commun Mass Spectrom 22:1533–1552. doi: 10.1002/rcm PubMedCrossRefGoogle Scholar
  10. Carlesi Jara C, Fino D, Specchia V, Saracco G, Spinelli P (2007) Electrochemical removal of antibiotics from wastewaters. Appl Catal B 70:479–487. doi: 10.1016/j.apcatb.2005.11.035 CrossRefGoogle Scholar
  11. Carvalho MF, Ferreira Jorge R, Pacheco CC, De Marco P, Castro PML (2005) Isolation and properties of a pure bacterial strain capable of fluorobenzene degradation as sole carbon and energy source. Environ Microbiol 7:294–298. doi: 10.1111/j.1462-2920.2004.00714.x PubMedCrossRefGoogle Scholar
  12. De Kreuk MK, Heijnen JJ, van Loosdrecht MCM (2005) Simultaneous COD, nitrogen and phosphate removal by aerobic granular sludge. Biotech Bioeng 90:761–769. doi: 10.1002/bit.20470 CrossRefGoogle Scholar
  13. Duque AF, Bessa VS, Carvalho MF, de Kreuk MK, van Loosdrecht MCM, Castro PML (2011) 2-Fluorophenol degradation by aerobic granular sludge in a sequencing batch reactor. Water Res 45:6745–6752. doi: 10.1016/j.watres.2011.10.033 PubMedCrossRefGoogle Scholar
  14. Egli T (2010) How to live at very low substrate concentration. Water Res 44:4826–4837. doi: 10.1016/j.watres.2010.07.023 PubMedCrossRefGoogle Scholar
  15. Fent K, Weston AA, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76:122–159. doi: 10.1016/j.aquatox.2005.09.009 PubMedCrossRefGoogle Scholar
  16. Golet EM, Alder AC, Giger W (2002) Environmental exposure and risk assessment of fluoroquinolone antibacterial agents in wastewater and river water of the Glatt Valley Watershed, Switzerland. Environ Sci Technol 36:3645–3651. doi: 10.1021/es0256212 PubMedCrossRefGoogle Scholar
  17. Halling-Sørensen B, Sengeløv G, Ingerslev F, Jensen LB (2003) Reduced antimicrobial potencies of oxytetracycline, tylosin, sulfadiazin, streptomycin, ciprofloxacin, and olaquindox due to environmental processes. Arch Environ Contam Toxicol 44:7–16. doi: 10.1007/s00244-002-1234-z PubMedCrossRefGoogle Scholar
  18. Hapeshi E, Fotiou I, Fatta-Kassinos D (2012) Sonophotocatalytic treatment of ofloxacin in secondary treated effluent and elucidation of its transformation products. Chem Eng J 224:96–105. doi: 10.1016/j.cej.2012.11.048 CrossRefGoogle Scholar
  19. Isidori M, Lavorgna M, Nardelli A, Pascarella L, Parrella A (2005) Toxic and genotoxic evaluation of six antibiotics on non-target organisms. Sci Total Environ 346:87–98. doi: 10.1016/j.scitotenv.2004.11.017 PubMedCrossRefGoogle Scholar
  20. Janssen DB, Dinkla IJT, Poelarends GJ, Terpstra P (2005) Bacterial degradation of xenobiotic compounds: evolution and distribution of novel enzyme activities. Environ Microbiol 7:1868–1882. doi: 10.1111/j.1462-2920.2005.00966.x PubMedCrossRefGoogle Scholar
  21. Kim D-W, Heinze TM, Kim B-S, Schnackenberg LK, Woodling KA, Sutherland JB (2011) Modification of norfloxacin by a Microbacterium sp. strain isolated from a wastewater treatment plant. Appl Environ Microbiol 77:6100–6108. doi: 10.1128/AEM.00545-11 PubMedCentralPubMedCrossRefGoogle Scholar
  22. Kovar K, Chaloupka V, Egli T (2002) A threshold substrate concentration is required to initiate the degradation of 3-phenylpropionic acid in Escherichia coli. Acta Biotechnol 22:285–298. doi: 10.1002/1521-3846 CrossRefGoogle Scholar
  23. Kümmerer K (2009) The presence of pharmaceuticals in the environment due to human use—present knowledge and future challenges. J Environ Manag 90:2354–2366. doi: 10.1016/j.jenvman.2009.01.023 CrossRefGoogle Scholar
  24. Kümmerer K, Al-Ahmad A, Mersch-Sundermann V (2000) Biodegradability of some antibiotics, elimination of the genotoxicity and affection of wastewater bacteria in a simple test. Chemosphere 40:701–710. doi: 10.1016/S0045-6535(99)00439-7 PubMedCrossRefGoogle Scholar
  25. Larsson DGJ, de Pedro C, Paxeus N (2007) Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J Hazard Mater 148:751–755. doi: 10.1016/j.jhazmat.2007.07.008 PubMedCrossRefGoogle Scholar
  26. Li B, Zhang T (2010) Biodegradation and adsorption of antibiotics in the activated sludge process. Environ Sci Technol 44:3468–3473. doi: 10.1021/es903490h PubMedCrossRefGoogle Scholar
  27. Lindberg RH, Olofsson U, Rendahl P, Johansson MI, Tysklind M, Andersson BA (2006) Behavior of fluoroquinolones and trimethoprim during mechanical, chemical, and active sludge treatment of sewage water and digestion of sludge. Environ Sci Technol 40:1042–1048. doi: 10.1021/es0516211 PubMedCrossRefGoogle Scholar
  28. Loh K-C, Yu Y-G (2000) Kinetics of carbazole degradation by Pseudomonas putida in presence of sodium salicylate. Water Res 34:4131–4138. doi: 10.1016/S0043-1354(00)00174-3 CrossRefGoogle Scholar
  29. Moreira IS, Amorim CL, Carvalho MF, Castro PML (2012a) Co-metabolic degradation of chlorobenzene by the fluorobenzene degrading wild strain Labrys portucalensis. Int Biodeterior Biodegrad 72:76–81. doi: 10.1016/j.ibiod.2012.05.013 CrossRefGoogle Scholar
  30. Moreira IS, Amorim CL, Carvalho MF, Castro PML (2012b) Degradation of difluorobenzenes by the wild strain Labrys portucalensis. Biodegrad 23:653–662. doi: 10.1007/s10532-012-9541-1 CrossRefGoogle Scholar
  31. Natarajan R, Azerad R, Badet B, Copin E (2005) Microbial cleavage of C-F bond. J Fluorine Chem 126:424–435. doi: 10.1016/j.jfluchem.2004.12.001 CrossRefGoogle Scholar
  32. Paul T, Dodd MC, Strathmann TJ (2010) Photolytic and photocatalytic decomposition of aqueous ciprofloxacin: transformation products and residual antibacterial activity. Water Res 44:3121–3132. doi: 10.1016/j.watres.2010.03.002 PubMedCrossRefGoogle Scholar
  33. Picó Y, Andreu V (2007) Fluoroquinolones in soil-risks and challenges. Anal Bioanal Chem 387:1287–1299. doi: 10.1007/s00216-006-0843-1 PubMedCrossRefGoogle Scholar
  34. Prieto A, Möder M, Rodil R, Adrian L, Marco-Urrea E (2011) Degradation of the antibiotics norfloxacin and ciprofloxacin by a white-rot fungus and identification of degradation products. Bioresour Technol 102:10987–10995. doi: 10.1016/j.biortech.2011.08.055 PubMedCrossRefGoogle Scholar
  35. Sukul P, Spiteller M (2007) Fluoroquinolone antibiotics in the environment. Rev Environ Contam Toxicol 191:131–162. doi: 10.1007/978-0-387-69163-3_5 PubMedGoogle Scholar
  36. Vasconcelos TG, Henriques DM, König A, Martins AF, Kümmerer K (2009) Photo-degradation of the antimicrobial ciprofloxacin at high pH: identification and biodegradability assessment of the primary by-products. Chemosphere 76:487–493. doi: 10.1016/j.chemosphere.2009.03.022 PubMedCrossRefGoogle Scholar
  37. Wetzstein H, Stadler M, Tichy H-V, Dalhoff A, Karl W (1999) Degradation of ciprofloxacin by basidiomycetes and identification of metabolites generated by the brown rot fungus Gloeophyllum striatum. Appl Environ Microbiol 65:1556–1563PubMedCentralPubMedGoogle Scholar
  38. Zhou NA, Lutovsky AC, Andaker GL, Gough HL, Ferguson JF (2013) Cultivation and characterization of bacterial isolates capable of degrading pharmaceutical and personal care products for improved removal in activated sludge wastewater treatment. Biodegrad. doi: 10.1007/s10532-013-9630-9 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Catarina L. Amorim
    • 1
    • 2
  • Irina S. Moreira
    • 1
  • Alexandra S. Maia
    • 1
    • 3
  • Maria E. Tiritan
    • 2
    • 3
  • Paula M. L. Castro
    • 1
    Email author
  1. 1.CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de BiotecnologiaCentro Regional do Porto da Universidade Católica Portuguesa/PortoPortoPortugal
  2. 2.CEQUIMED-UP, Laboratório de Química Orgânica e Farmacêutica, Departamento Ciências QuímicasFaculdade de Farmácia da Universidade do PortoPortoPortugal
  3. 3.Instituto Superior de Ciências da Saúde-Norte (ISCS-N)Cooperativa do Ensino Superior Politécnico e Universitário (CESPU), Centro de Investigação em Ciências da Saúde (CICS)GandraPortugal

Personalised recommendations