Applied Microbiology and Biotechnology

, Volume 98, Issue 2, pp 603–610 | Cite as

Anti-microbial and cytotoxic 1,6-dihydroxyphenazine-5,10-dioxide (iodinin) produced by Streptosporangium sp. DSM 45942 isolated from the fjord sediment

  • Håvard Sletta
  • Kristin F. Degnes
  • Lars Herfindal
  • Geir Klinkenberg
  • Espen Fjærvik
  • Kolbjørn Zahlsen
  • Anders Brunsvik
  • Gyrid Nygaard
  • Finn L. Aachmann
  • Trond E. Ellingsen
  • Stein O. Døskeland
  • Sergey B. Zotchev
Biotechnological products and process engineering

Abstract

Phenazine natural products/compounds possess a range of biological activities, including anti-microbial and cytotoxic, making them valuable starting materials for drug development in several therapeutic areas. These compounds are biosynthesized almost exclusively by eubacteria of both terrestrial and marine origins from erythrose 4-phosphate and phosphoenol pyruvate via the shikimate pathway. In this paper, we report isolation of actinomycete bacteria from marine sediment collected in the Trondheimfjord, Norway. Screening of the isolates for biological activity produced several “hits”, one of which was followed up by identification and purification of the active compound from the actinomycete bacterium Streptosporangium sp. The purified compound, identified as 1,6-dihydroxyphenazine-5,10-dioxide (iodinin), was subjected to extended tests for biological activity against bacteria, fungi and mammalian cells. In these tests, the iodinin demonstrated high anti-microbial and cytotoxic activity, and was particularly potent against leukaemia cell lines. This is the first report on the isolation of iodinin from a marine-derived Streptosporangium.

Keywords

Phenazines Marine bioprospecting Iodinin Actinomycete bacterium 

Supplementary material

253_2013_5320_MOESM1_ESM.pdf (95 kb)
ESM 1(PDF 95 kb)

References

  1. Abken HJ, Tietze M, Brodersen J, Baumer S, Beifuss U, Deppenmeier U (1998) Isolation and characterization of methanophenazine and function of phenazines in membrane-bound electron transport of Methanosarcina mazei Go1. J Bacteriol 180:2027–2032PubMedCentralPubMedGoogle Scholar
  2. Aymerich T, Holo H, Håvarstein LS, Hugas M, Garriga M, Nes IF (1996) Biochemical and genetic characterization of enterocin A from Enterococcus faecium, a new antilisterial bacteriocin in the pediocin family of bacteriocins. Appl Environ Microbiol 62:1676–1682PubMedCentralPubMedGoogle Scholar
  3. Baures PW, Wiznycia A, Beatty AM (2000) Hydrogen bonding isosteres: Bimolecular carboxylic acid and amine-N-oxide interactions mediated via CH center dot center dot center dot O hydrogen bonds. Bioorgan Med Chem 8:1599–1605CrossRefGoogle Scholar
  4. Bredholdt H, Galatenko OA, Engelhardt K, Fjærvik E, Terekhova LP, Zotchev SB (2007) Rare actinomycete bacteria from the shallow water sediments of the Trondheim fjord, Norway: isolation, diversity and biological activity. Environ Microbiol 9:2756–2764PubMedCrossRefGoogle Scholar
  5. Bredholdt H, Fjaervik E, Johnsen G, Zotchev SB (2008) Actinomycetes from sediments in the Trondheim fjord, Norway: diversity and biological activity. Mar Drugs 6:12–24CrossRefGoogle Scholar
  6. Byng GS, Turner JM (1976) Isolation of pigmentation mutants of Pseudomonas phenazinium. J Gen Microbiol 97:57–62PubMedCrossRefGoogle Scholar
  7. Ceskova P, Zak Z, Johnson DB, Janiczek O, Mandl M (2002) Formation of iodinin by a strain of Acidithiobacillus ferrooxidans grown on elemental sulfur. Folia Microbiol 47:78–80CrossRefGoogle Scholar
  8. Chin YW, Balunas MJ, Chai HB, Kinghorn AD (2006) Drug discovery from natural sources. Aaps J 8:E239–E253PubMedGoogle Scholar
  9. Davis JG (1939) Chromobacterium iodinum (n. sp.). Zentralbl Bakteriol II Abt 100:273–276Google Scholar
  10. Engelhardt K, Degnes KF, Kemmler M, Bredholt H, Fjærvik E, Klinkenberg G, Sletta H, Ellingsen TE, Zotchev SB (2010) Production of a new thiopeptide antibiotic, TP-1161, by a marine Nocardiopsis species. Appl Environ Microb 76:4969–4976CrossRefGoogle Scholar
  11. Hakvåg S, Fjaervik E, Josefsen KD, Ian E, Ellingsen TE, Zotchev SB (2008) Characterization of Streptomyces spp. isolated from the sea surface microlayer in the Trondheim Fjord, Norway. Mar Drugs 6:620–635PubMedCentralPubMedCrossRefGoogle Scholar
  12. Herfindal L, Oftedal L, Selheim F, Wahlsten M, Sivonen K, Døskeland SO (2005) A high proportion of Baltic Sea benthic cyanobacterial isolates contain apoptogens able to induce rapid death of isolated rat hepatocytes. Toxicon 46:252–260PubMedCrossRefGoogle Scholar
  13. Hollstein U, Jr van Gemert RJ (1971) Interaction of phenazines with polydeoxyribonucleotides. Biochemistry 10:497–504PubMedCrossRefGoogle Scholar
  14. Jørgensen H, Fjærvik E, Hakvag S, Bruheim P, Bredholt H, Klinkenberg G, Ellingsen TE, Zotchev SB (2009) Candicidin biosynthesis gene cluster is widely distributed among Streptomyces spp. isolated from the sediments and the neuston layer of the Trondheim fjord, Norway. Appl Environ Microbiol 75:3296–3303PubMedCentralPubMedCrossRefGoogle Scholar
  15. Lacaze N, Gombaud-Saintonge G, Lanotte M (1983) Conditions controlling long-term proliferation of Brown Norway rat promyelocytic leukemia in vitro: primary growth stimulation by microenvironment and establishment of an autonomous Brown Norway 'leukemic stem cell line'. Leukemia research 7:145–154PubMedCrossRefGoogle Scholar
  16. Lanotte M, Martin-Thouvenin V, Najman S, Balerini P, Valensi F, Berger R (1991) NB4, a maturation inducible cell line with t(15;17) marker isolated from a human acute promyelocytic leukemia (M3). Blood 77:1080–1086PubMedGoogle Scholar
  17. Laursen JB, Nielsen J (2004) Phenazine natural products: biosynthesis, synthetic analogues, and biological activity. Chem Rev 104:1663–1685PubMedCrossRefGoogle Scholar
  18. Mavrodi DV, Blankenfeldt W, Thomashow LS (2006) Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu Rev Phytopathol 44:417–445PubMedCrossRefGoogle Scholar
  19. Mavrodi DV, Mavrodi OV, Parejko JA, Bonsall RF, Kwak YS, Paulitz TC, Thomashow LS, Weller DM (2012) Accumulation of the antibiotic phenazine-1-carboxylic acid in the rhizosphere of dryland cereals. Appl Environ Microbiol 78:804–812PubMedCentralPubMedCrossRefGoogle Scholar
  20. McIlwain H (1943) The anti-streptococcal action of iodinin. Naphthaquinones and anthraquinones as its main natural antagonists. Biochem J 37:265–271PubMedGoogle Scholar
  21. Mellgren G, Vintermyr OK, Døskeland SO (1995) Okadaic acid, cAMP, and selected nutrients inhibit hepatocyte proliferation at different stages in G1: modulation of the cAMP effect by phosphatase inhibitors and nutrients. J Cell Physiol 163:232–240PubMedCrossRefGoogle Scholar
  22. Meng CK, Fenn JB (1991) Formation of charged clusters during electrospray ionization of organic solute species. Org Mass Spectr 26:542–549CrossRefGoogle Scholar
  23. Mentel M, Ahuja EG, Mavrodi DV, Breinbauer R, Thomashow LS, Blankenfeldt W (2009) Of two make one: the biosynthesis of phenazines. Chembiochem 10:2295–2304PubMedCrossRefGoogle Scholar
  24. Myhren LE, Nygaard G, Gausdal G, Sletta H, Teigen K, Degnes KF, Zahlsen K, Brunsvik A, Bruserud O, Døskeland SO, Selheim F, Herfindal L (2013) Iodinin (1,6-dihydroxyphenazine 5,10-dioxide) from Streptosporangium sp. induces apoptosis selectively in myeloid leukemia cell lines and patient cells. Mar Drugs 11:332–349PubMedCentralPubMedCrossRefGoogle Scholar
  25. Nielsen KF, Smedsgaard J (2003) Fungal metabolite screening: database of 474 mycotoxins and fungal metabolites for dereplication by standardised liquid chromatography-UV-mass spectrometry methodology. J Chromatogr A 1002:111–136PubMedCrossRefGoogle Scholar
  26. Pendino F, Sahraoui T, Lanotte M, Sega-Bendirdjian E (2002) A novel mechanism of retinoic acid resistance in acute promyelocytic leukemia cells through a defective pathway in telomerase regulation. Leukemia 16:826–832PubMedCrossRefGoogle Scholar
  27. Podojil M, Gerber NN (1967) The biosynthesis of 1,6-phenazinediol 5,10-dioxide (Iodinin) by Brevibacterium iodinum. Biochemistry 6:2701–2705PubMedCrossRefGoogle Scholar
  28. Ponten J, Macintyre EH (1968) Long term culture of normal and neoplastic human glia. Acta Pathol Microbiol Scand 74:465–486PubMedCrossRefGoogle Scholar
  29. Prauser H, Eckardt K (1967) Formation of 1,6-dihydroxyphenazine-5,10-dioxide by Streptosporangium amethystogenes var. nonreducens var. nov. Z Allg Mikrobiol 7:409–410PubMedCrossRefGoogle Scholar
  30. Sandal T, Aumo L, Hedin L, Gjertsen BT, Døskeland SO (2003) Irod/Ian5: an inhibitor of gamma-radiation- and okadaic acid-induced apoptosis. Mol Biol Cell 14:3292–3304PubMedCentralPubMedCrossRefGoogle Scholar
  31. Seite P, Ruchaud S, Hillion J, Gendron MC, Bruland O, Segal-Bendirdjian E, Doskeland SO, Lillehaug JR, Lanotte M (2000) Ectopic expression of Bcl-2 switches over nuclear signalling for cAMP-induced apoptosis to granulocytic differentiation. Cell Death Differ 7:1081–1089PubMedCrossRefGoogle Scholar
  32. Seglen PO (1976) Preparation of isolated rat liver cells. Methods Cell Biol 13:29–83PubMedCrossRefGoogle Scholar
  33. Sekurova O, Sletta H, Ellingsen TE, Valla S, Zotchev SB (1999) Molecular cloning and analysis of a pleiotropic regulatory gene locus from the nystatin producer Streptomyces noursei ATCC11455. FEMS Microbiol Lett 177:297–304PubMedCrossRefGoogle Scholar
  34. Su JJ, Zhou Q, Zhang HY, Li YQ, Huang XQ, Xu YQ (2010) Medium optimization for phenazine-1-carboxylic acid production by a gacA qscR double mutant of Pseudomonas sp. M18 using response surface methodology. Bioresour Technol 101:4089–4095PubMedCrossRefGoogle Scholar
  35. Xia Y, Legge G, Jun KY, Qi Y, Lee H, Gao X (2005) IP-COSY, a totally in-phase and sensitive COSY experiment. Magn Reson Chem 43:372–379PubMedCrossRefGoogle Scholar
  36. Zotchev SB (2012) Marine actinomycetes as an emerging resource for the drug development pipelines. J Biotechnol 158:168–175PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Håvard Sletta
    • 1
  • Kristin F. Degnes
    • 1
  • Lars Herfindal
    • 2
  • Geir Klinkenberg
    • 1
  • Espen Fjærvik
    • 3
  • Kolbjørn Zahlsen
    • 1
  • Anders Brunsvik
    • 1
  • Gyrid Nygaard
    • 3
  • Finn L. Aachmann
    • 3
  • Trond E. Ellingsen
    • 1
  • Stein O. Døskeland
    • 2
  • Sergey B. Zotchev
    • 3
  1. 1.SINTEF Materials and ChemistryDepartment of BiotechnologyTrondheimNorway
  2. 2.Department of BiomedicineUniversity of BergenBergenNorway
  3. 3.Department of BiotechnologyNorwegian University of Science and TechnologyTrondhiemNorway

Personalised recommendations