Applied Microbiology and Biotechnology

, Volume 98, Issue 7, pp 3165–3180 | Cite as

Differential responses of ammonia/ammonium-oxidizing microorganisms in mangrove sediment to amendment of acetate and leaf litter

Environmental biotechnology


The effects of acetate and leaf litter powder on ammonia/ammonium-oxidizing microorganisms (AOMs) in mangrove sediment were investigated in a laboratory incubation study for a period of 60 days. The results showed that different AOMs responded differently to the addition of acetate and leaf litter. A higher diversity of anaerobic ammonium-oxidizing (anammox) bacteria was observed when acetate or leaf litter was added than the control. However, acetate and leaf litter generally inhibited the growth of anammox bacteria despite that leaf litter promoted their growth in the first 5 days. The inhibitory effects on anammox bacteria were more pronounced by acetate than by leaf litter. Neither acetate nor leaf litter affected ammonia-oxidizing archaea (AOA) community structures, but promoted their growth. For ammonia-oxidizing bacteria (AOB), the addition of acetate or leaf litter resulted in changes of community structures and promoted their growth in the early phase of the incubation. In addition, the promoting effects by leaf litter on AOB growth were more obvious than acetate. These results indicated that organic substances affect AOM community structures and abundances. The study suggests that leaf litter has an important influence on the community structures and abundances of AOMs in mangrove sediment and affects the nitrogen cycle in such ecosystem.


AOB AOA Anammox bacteria Slurry incubation Acetate Leaf litter 


  1. Abeliovich A, Vonshak A (1992) Anaerobic metabolism of Nitrosomonas europaea. Arch Microbiol 158(4):267–270. doi:10.1007/bf00245243 CrossRefGoogle Scholar
  2. Agogue H, Brink M, Dinasquet J, Herndl GJ (2008) Major gradients in putatively nitrifying and non-nitrifying Archaea in the deep North Atlantic. Nature 456(7223):788–791PubMedCrossRefGoogle Scholar
  3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410PubMedCrossRefGoogle Scholar
  4. Alves RJE, Wanek W, Zappe A, Richter A, Svenning MM, Schleper C, Urich T (2013) Nitrification rates in Arctic soils are associated with functionally distinct populations of ammonia-oxidizing archaea. ISME J. doi:10.1038/ismej.2013.35 Google Scholar
  5. Auguet J-C, Nomokonova N, Camarero L, Casamayor EO (2011) Seasonal changes of freshwater ammonia-oxidizing archaeal assemblages and nitrogen species in oligotrophic alpine lakes. Appl Environ Microbiol 77(6):1937–1945. doi:10.1128/aem.01213-10 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Berg IA, Kockelkorn D, Ramos-Vera WH, Say RF, Zarzycki J, Hügler M, Alber BE, Fuchs G (2010) Autotrophic carbon fixation in archaea. Nat Rev Micro 8(6):447–460CrossRefGoogle Scholar
  7. Bock E, Schmidt I, Stüven R, Zart D (1995) Nitrogen loss caused by denitrifying Nitrosomonas cells using ammonium or hydrogen as electron donors and nitrite as electron acceptor. Arch Microbiol 163(1):16–20. doi:10.1007/s002030050165 CrossRefGoogle Scholar
  8. Brandes JA, Devol AH, Deutsch C (2007) New developments in the marine nitrogen cycle. Chem Rev 107(2):577–589. doi:10.1021/cr050377t PubMedCrossRefGoogle Scholar
  9. Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008) Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Micro 6(3):245–252. doi:10.1038/nrmicro1852 CrossRefGoogle Scholar
  10. Cao H, Hong Y, Li M, Gu J-D (2011a) Diversity and abundance of ammonia-oxidizing prokaryotes in sediments from the coastal Pearl River estuary to the South China Sea. Antonie Leeuwenhoek 100(4):545–556. doi:10.1007/s10482-011-9610-1 PubMedCentralPubMedCrossRefGoogle Scholar
  11. Cao H, Li M, Dang H, Gu J-D (2011b) Responses of aerobic and anaerobic ammonia/ammonium-oxidizing microorganisms to anthropogenic pollution in coastal marine environments. Method Enzymol 496:35–62CrossRefGoogle Scholar
  12. Cao H, Li M, Hong Y, Gu J-D (2011c) Diversity and abundance of ammonia-oxidizing archaea and bacteria in polluted mangrove sediment. Syst Appl Microbiol 34(7):513–523. doi:10.1016/j.syapm.2010.11.023 PubMedCrossRefGoogle Scholar
  13. Cao H, Hong Y, Li M, Gu J-D (2012) Community shift of ammonia-oxidizing bacteria along an anthropogenic pollution gradient from the Pearl River Delta to the South China Sea. Appl Microbiol Biotechnol 94(1):247–259. doi:10.1007/s00253-011-3636-1
  14. Cao H, Auguet J-C, Gu J-D (2013) Global ecological pattern of ammonia-oxidizing archaea. PLoS ONE 8:e52853. doi:10.1371/journal.pone.0052853
  15. Chain P, Lamerdin J, Larimer F, Regala W, Lao V, Land M, Hauser L, Hooper A, Klotz M, Norton J, Sayavedra-Soto L, Arciero D, Hommes N, Whittaker M, Arp D (2003) Complete genome sequence of the ammonia-oxidizing bacterium and obligate chemolithoautotroph Nitrosomonas europaea. J Bacteriol 185(9):2759–2773. doi:10.1128/jb.185.9.2759-2773.2003 PubMedCentralPubMedCrossRefGoogle Scholar
  16. Chen X-P, Zhu Y-G, Xia Y, Shen J-P, He J-Z (2008) Ammonia-oxidizing archaea: important players in paddy rhizosphere soil? Environ Microbiol 10(8):1978–1987PubMedCrossRefGoogle Scholar
  17. Clark I, Timlin R, Bourbonnais A, Jones K, Lafleur D, Wickens K (2008) Origin and fate of industrial ammonium in anoxic ground water—15N evidence for anaerobic oxidation (anammox). Ground Water Monit Remediat 28(3):73–82. doi:10.1111/j.1745-6592.2008.00206.x CrossRefGoogle Scholar
  18. Dale OR, Tobias CR, Song B (2009) Biogeographical distribution of diverse anaerobic ammonium oxidizing (anammox) bacteria in Cape Fear River Estuary. Environ Microbiol 11(5):1194–1207PubMedCrossRefGoogle Scholar
  19. Dang H, Chen R, Wang L, Guo L, Chen P, Tang Z, Tian F, Li S, Klotz MG (2010) Environmental factors shape sediment anammox bacterial communities in hypernutrified Jiaozhou Bay, China. Appl Environ Microbiol 76(21):7036–7047. doi:10.1128/aem.01264-10 PubMedCentralPubMedCrossRefGoogle Scholar
  20. Francis CA, Roberts KJ, Beman JM, Alyson ES, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA 102(41):14683–14688PubMedCentralPubMedCrossRefGoogle Scholar
  21. Hamersley MR, Woebken D, Boehrer B, Schultze M, Lavik G, Kuypers MMM (2009) Water column anammox and denitrification in a temperate permanently stratified lake (Lake Rassnitzer, Germany). Syst Appl Microbiol 32(8):571–582. doi:10.1016/j.syapm.2009.07.009 PubMedCrossRefGoogle Scholar
  22. Han P, Gu J-D (2013) More refined diversity of anammox bacteria recovered and distribution in different ecosystems. Appl Microbiol Biotechnol 97:3653–3663Google Scholar
  23. Han P, Huang Y-T, Lin J-G, Gu J-D (2013) A comparison of two 16S rRNA gene-based PCR primer sets in unraveling anammox bacteria from different environmental samples. Appl Microbiol Biotechnol. doi:10.1007/s00253-013-5305-z
  24. Hatzenpichler R, Lebedeva EV, Spieck E, Stoecker K, Richter A, Daims H, Wagner M (2008) A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. Proc Natl Acad Sci USA 105(6):2134–2139PubMedCentralPubMedCrossRefGoogle Scholar
  25. Head IM, Hiorns WD, Embley TM, McCarthy AJ, Saunders JR (1993) The phylogeny of autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal RNA gene sequences. J Gen Microbiol 139(6):1147–1153. doi:10.1099/00221287-139-6-1147 PubMedCrossRefGoogle Scholar
  26. Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25(1):101–110CrossRefGoogle Scholar
  27. Hong Y-G, Li M, Cao H, Gu J-D (2011) Residence of habitat-specific anammox bacteria in the deep-sea subsurface sediments of the South China Sea: analyses of marker gene abundance with physical chemical parameters. Microb Ecol 62(1):36–47. doi:10.1007/s00248-011-9849-0 PubMedCentralPubMedCrossRefGoogle Scholar
  28. Hu Z, Lotti T, de Kreuk M, Kleerebezem R, van Loosdrecht M, Kruit J, Jetten MSM, Kartal B (2013) Nitrogen removal by a nitritation-anammox bioreactor at low temperature. Appl Environ Microbiol. doi:10.1128/aem.03987-12 Google Scholar
  29. Jaeschke A, Camp HJMOD, Harhangi H, Klimiuk A, Hopmans EC, Jetten MSM, Schouten S, Damsté JSS (2009) 16S rRNA gene and lipid biomarker evidence for anaerobic ammonium-oxidizing bacteria (anammox) in California and Nevada hot springs. FEMS Microbiol Ecol 67(3):343–350PubMedCrossRefGoogle Scholar
  30. Jetten MSM, Lv N, Strous M, Kartal B, Keltjens JT, Op den Camp HJM (2009) Biochemistry and molecular biology of anammox bacteria. Crit Rev Biochem Mol Biol 44(2–3):65–84. doi:10.1080/10409230902722783 PubMedGoogle Scholar
  31. Jia Z, Conrad R (2009) Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Environ Microbiol 11(7):1658–1671. doi:10.1111/j.1462-2920.2009.01891.x PubMedCrossRefGoogle Scholar
  32. Jiang QQ, Bakken LR (1999) Comparison of Nitrosospira strains isolated from terrestrial environments. FEMS Microbiol Ecol 30(2):171–186. doi:10.1111/j.1574-6941.1999.tb00646.x PubMedCrossRefGoogle Scholar
  33. Könneke M, Bernhard AE, Torre JRDL, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437(7058):543–546PubMedCrossRefGoogle Scholar
  34. Kalvelage T, Lavik G, Lam P, Contreras S, Arteaga L, Loscher CR, Oschlies A, Paulmier A, Stramma L, Kuypers MMM (2013) Nitrogen cycling driven by organic matter export in the South Pacific oxygen minimum zone. Nature Geosci 6(3):228–234. doi:10.1038/ngeo1739 CrossRefGoogle Scholar
  35. Kartal B, Kuenen JG, van Loosdrecht MCM (2010) Sewage treatment with anammox. Science 328(5979):702–703. doi:10.1126/science.1185941 PubMedCrossRefGoogle Scholar
  36. Kartal B, Rattray J, van Niftrik LA, van de Vossenberg J, Schmid MC, Webb RI, Schouten S, Fuerst JA, Damsté Jaap S, Jetten MSM, Strous M (2007) Candidatus “Anammoxoglobus propionicus” a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. Syst Appl Microbiol 30(1):39–49PubMedCrossRefGoogle Scholar
  37. Kartal B, Van Niftrik L, Rattray J, Van De Vossenberg JLCM, Schmid MC, Sinninghe Damsté J, Jetten MSM, Strous M (2008) Candidatus ‘Brocadia fulgida’: an autofluorescent anaerobic ammonium oxidizing bacterium. FEMS Microbiol Ecol 63(1):46–55. doi:10.1111/j.1574-6941.2007.00408.x PubMedCrossRefGoogle Scholar
  38. Ke X, Angel R, Lu Y, Conrad R (2013) Niche differentiation of ammonia oxidizers and nitrite oxidizers in rice paddy soil. Environ Microbiol 15(8):2275–2292. doi:10.1111/1462-2920.12098 PubMedCrossRefGoogle Scholar
  39. Ke X, Lu Y (2012) Adaptation of ammonia-oxidizing microorganisms to environment shift of paddy field soil. FEMS Microbiol Ecol 80:87–97PubMedCrossRefGoogle Scholar
  40. Koops H-P, Pommerening-Röser A (2001) Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species. FEMS Microbiol Ecol 37(1):1–9CrossRefGoogle Scholar
  41. Koper TE, Stark JM, Habteselassie MY, Norton JM (2010) Nitrification exhibits Haldane kinetics in an agricultural soil treated with ammonium sulfate or dairy-waste compost. FEMS Microbiol Ecol 74(2):316–322. doi:10.1111/j.1574-6941.2010.00960.x PubMedCrossRefGoogle Scholar
  42. Kowalchuk GA, Stephen JR (2001) Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu Rev Microbiol 55(1):485–529. doi:10.1146/annurev.micro.55.1.485 PubMedCrossRefGoogle Scholar
  43. Kuypers MMM, Lavik G, Woebken D, Schmid M, Fuchs BM, Amann R, Jørgensen BB, Jetten MSM, Hayes JM (2005) Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proc Natl Acad Sci USA 102(18):6478–6483PubMedCentralPubMedCrossRefGoogle Scholar
  44. Kuypers MMM, Sliekers AO, Lavik G, Schmid M, Jorgensen BB, Kuenen JG, Sinninghe Damsté JS, Strous M, Jetten MSM (2003) Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422(6932):608–611PubMedCrossRefGoogle Scholar
  45. Lam P, Lavik G, Jensen MM, van de Vossenberg J, Schmid M, Woebken D, Gutiérrez D, Amann R, Jetten MSM, Kuypers MMM (2009) Revising the nitrogen cycle in the Peruvian oxygen minimum zone. Proc Natl Acad Sci USA 106(12):4752–4757. doi:10.1073/pnas.0812444106 PubMedCentralPubMedCrossRefGoogle Scholar
  46. Lehtovirta-Morley LE, Stoecker K, Vilcinskas A, Prosser JI, Nicol GW (2011) Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. Proc Natl Acad Sci USA 108(38):15892–15897. doi:10.1073/pnas.1107196108 PubMedCentralPubMedCrossRefGoogle Scholar
  47. Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442(7104):806–809PubMedCrossRefGoogle Scholar
  48. Li H, Chen S, Mu BZ, Gu J-D (2010) Molecular detection of anaerobic ammonium-oxidizing (Anammox) bacteria in high-temperature petroleum reservoirs. Microb Ecol 60(4):771–783PubMedCentralPubMedCrossRefGoogle Scholar
  49. Li M, Cao H-L, Hong Y-G, Gu J-D (2011a) Seasonal dynamics of anammox bacteria in estuarial sediment of the Mai Po Nature Reserve revealed by analyzing the 16S rRNA and hydrazine oxidoreductase (hzo) genes. Microbes Environ 26(1):15–22PubMedCrossRefGoogle Scholar
  50. Li M, Cao H, Hong Y, Gu J-D (2011b) Spatial distribution and abundances of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in mangrove sediments. Appl Microbiol Biotechnol 89(4):1243–1254. doi:10.1007/s00253-010-2929-0 PubMedCentralPubMedCrossRefGoogle Scholar
  51. Li M, Ford T, Li X, Gu J-D (2011c) Cytochrome cd 1-containing nitrite reductase encoding gene nirS as a new functional biomarker for detection of anaerobic ammonium oxidizing (anammox) bacteria. Environ Sci Technol 45(8):3547–3553. doi:10.1021/es103826w PubMedCrossRefGoogle Scholar
  52. Li M, Hong Y-G, Cao H-L, Gu J-D (2011d) Mangrove trees affect the community structure and distribution of anammox bacteria at an anthropogenic-polluted mangrove in the Pearl River Delta reflected by 16S rRNA and hydrazine oxidoreductase (HZO) encoding gene analyses. Ecotoxicology 20(8):1780–1790. doi:10.1007/s10646-011-0711-4 PubMedCentralPubMedCrossRefGoogle Scholar
  53. Long A, Heitman J, Tobias C, Philips R, Song B (2013) Co-occurring anammox, denitrification, and codenitrification in agricultural soils. Appl Environ Microbiol 79(1):168–176. doi:10.1128/aem.02520-12 PubMedCentralPubMedCrossRefGoogle Scholar
  54. Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR, Stahl DA (2009) Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 461(7266):976–979. doi:10.1038/nature08465 PubMedCrossRefGoogle Scholar
  55. Molinuevo B, García MC, Karakashev D, Angelidaki I (2009) Anammox for ammonia removal from pig manure effluents: effect of organic matter content on process performance. Bioresour Technol 100(7):2171–2175PubMedCrossRefGoogle Scholar
  56. Mußmann M, Brito I, Pitcher A, Sinninghe Damsté JS, Hatzenpichler R, Richter A, Nielsen JL, Nielsen PH, Müller A, Daims H, Wagner M, Head IM (2011) Thaumarchaeotes abundant in refinery nitrifying sludges express amoA but are not obligate autotrophic ammonia oxidizers. Proc Natl Acad Sci USA 108(40):16771–16776. doi:10.1073/pnas.1106427108 PubMedCentralPubMedCrossRefGoogle Scholar
  57. Mulder A, van de Graaf AA, Robertson LA, Kuenen JG (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Ecol 16(3):177–183CrossRefGoogle Scholar
  58. Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59(3):695–700PubMedCentralPubMedGoogle Scholar
  59. Nicol GW, Leininger S, Schleper C, Prosser JI (2008) The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ Microbiol 10(11):2966–2978PubMedCrossRefGoogle Scholar
  60. Nicolaisen MH, Ramsing NB (2002) Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria. J Microbiol Methods 50(2):189–203. doi:10.1016/s0167-7012(02)00026-x PubMedCrossRefGoogle Scholar
  61. Nold SC, Zhou J, Devol AH, Tiedje JM (2000) Pacific Northwest marine sediments contain ammonia-oxidizing bacteria in the β subdivision of the Proteobacteria. Appl Environ Microbiol 66(10):4532–4535. doi:10.1128/aem.66.10.4532-4535.2000 PubMedCentralPubMedCrossRefGoogle Scholar
  62. Okano Y, Hristova KR, Leutenegger CM, Jackson LE, Denison RF, Gebreyesus B, Lebauer D, Scow KM (2004) Application of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil. Appl Environ Microbiol 70(2):1008–1016. doi:10.1128/aem.70.2.1008-1016.2004 PubMedCentralPubMedCrossRefGoogle Scholar
  63. Park SJ, Park BJ, Rhee SK (2008) Comparative analysis of archaeal 16S rRNA and amoA genes to estimate the abundance and diversity of ammonia-oxidizing archaea in marine sediments. Extremophiles 12(4):605–615PubMedCrossRefGoogle Scholar
  64. Penton CR, Devol AH, Tiedje JM (2006) Molecular evidence for the broad distribution of anaerobic ammonium-oxidizing bacteria in freshwater and marine sediments. Appl Environ Microbiol 72(10):6829–6832. doi:10.1128/aem.01254-06 PubMedCentralPubMedCrossRefGoogle Scholar
  65. Pester M, Schleper C, Wagner M (2011) The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology. Curr Opin Microbiol 14(3):300–306. doi:10.1016/j.mib.2011.04.007 PubMedCentralPubMedCrossRefGoogle Scholar
  66. Purkhold U, Pommerening-Röser A, Juretschko S, Schmid MC, Koops H-P, Wagner M (2000) Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl Environ Microbiol 66(12):5368–5382. doi:10.1128/aem.66.12.5368-5382.2000 PubMedCentralPubMedCrossRefGoogle Scholar
  67. Quan Z-X, Rhee S-K, Zuo J-E, Yang Y, Bae J-W, Park JR, Lee S-T, Park Y-H (2008) Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor. Environ Microbiol 10(11):3130–3139PubMedCrossRefGoogle Scholar
  68. Rysgaard S, Glud RN (2004) Anaerobic N2 production in Arctic sea ice. Limnol Oceanogr 49(1):86–94CrossRefGoogle Scholar
  69. Sabumon PC (2007) Anaerobic ammonia removal in presence of organic matter: a novel route. J Hazard Mater 149(1):49–59PubMedCrossRefGoogle Scholar
  70. Schleper C, Jurgens G, Jonuscheit M (2005) Genomic studies of uncultivated archaea. Nat Rev Micro 3(6):479–488CrossRefGoogle Scholar
  71. Schmid M, Twachtmann U, Klein M, Strous M, Juretschko S, Jetten M, Metzger JW, Schleifer K-H, Wagner M (2000) Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Syst Appl Microbiol 23(1):93–106. doi:10.1016/s0723-2020(00)80050-8 PubMedCrossRefGoogle Scholar
  72. Schmid M, Walsh K, Webb R, Rijpstra WI, van de Pas-Schoonen K, Verbruggen MJ, Hill T, Moffett B, Fuerst J, Schouten S, Damsté JSS, Harris J, Shaw P, Jetten M, Strous M (2003) Candidatus “Scalindua brodae”, sp. nov., Candidatus “Scalindua wagneri”, sp. nov., two new species of anaerobic ammonium oxidizing bacteria. Syst Appl Microbiol 26(4):529–538PubMedCrossRefGoogle Scholar
  73. Schubert CJ, Durisch-Kaiser E, Wehrli B, Thamdrup B, Lam P, Kuypers MMM (2006) Anaerobic ammonium oxidation in a tropical freshwater system (Lake Tanganyika). Environ Microbiol 8(10):1857–1863PubMedCrossRefGoogle Scholar
  74. Singh JN, Mudgal V (2000) Assessment of mineral content of tree leaf litter of Nokrek biosphere reserve and its impact on soil properties. Trop Ecol 41(2):225–232Google Scholar
  75. Smith TJ, Boto KG, Frusher SD, Giddins RL (1991) Keystone species and mangrove forest dynamics: the influence of burrowing by crabs on soil nutrient status and forest productivity. Estuar Coast Shelf Sci 33(5):419–432CrossRefGoogle Scholar
  76. Stüven R, Vollmer M, Bock E (1992) The impact of organic matter on nitric oxide formation by Nitrosomonas europaea. Arch Microbiol 158(6):439–443. doi:10.1007/bf00276306 CrossRefGoogle Scholar
  77. Stein LY, Arp DJ, Berube PM, Chain PSG, Hauser L, Jetten MSM, Klotz MG, Larimer FW, Norton JM, Camp HJMOD, Shin M, Wei X (2007) Whole-genome analysis of the ammonia-oxidizing bacterium, Nitrosomonas eutropha C91: implications for niche adaptation. Environ Microbiol 9(12):2993–3007PubMedCrossRefGoogle Scholar
  78. Strous M, Fuerst JA, Kramer EHM, Logemann S, Muyzer G, van de Pas-Schoonen KT, Webb R, Kuenen JG, Jetten MSM (1999) Missing lithotroph identified as new planctomycete. Nature 400(6743):446–449PubMedCrossRefGoogle Scholar
  79. Strous M, Pelletier E, Mangenot S, Rattei T, Lehner A, Taylor MW, Horn M, Daims H, Bartol-Mavel D, Wincker P, Barbe V, Fonknechten N, Vallenet D, Segurens B (2006) Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature 440(7085):790PubMedCrossRefGoogle Scholar
  80. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739. doi:10.1093/molbev/msr121 PubMedCentralPubMedCrossRefGoogle Scholar
  81. Thamdrup B (2013) Oceanography: coastal oceanic nitrogen loss. Nature Geosci 6(3):160–161CrossRefGoogle Scholar
  82. Tourna M, Stieglmeier M, Spang A, Könneke M, Schintlmeister A, Urich T, Engel M, Schloter M, Wagner M, Richter A, Schleper C (2011) Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proc Natl Acad Sci USA 108(20):8420–8425. doi:10.1073/pnas.1013488108 PubMedCentralPubMedCrossRefGoogle Scholar
  83. Urakawa H, Tajima Y, Numata Y, Tsuneda S (2008) Low temperature decreases the phylogenetic diversity of ammonia-oxidizing archaea and bacteria in aquarium biofiltration systems. Appl Environ Microbiol 74(3):894–900. doi:10.1128/aem.01529-07 PubMedCentralPubMedCrossRefGoogle Scholar
  84. van de Vossenberg J, Woebken D, Maalcke WJ, Wessels HJCT, Dutilh BE, Kartal B, Janssen-Megens EM, Roeselers G, Yan J, Speth D, Gloerich J, Geerts W, van der Biezen E, Pluk W, Francoijs K-J, Russ L, Lam P, Malfatti SA, Tringe SG, Haaijer SCM, Op den Camp HJM, Stunnenberg HG, Amann R, Kuypers MMM, Jetten MSM (2013) The metagenome of the marine anammox bacterium ‘Candidatus Scalindua profunda’ illustrates the versatility of this globally important nitrogen cycle bacterium. Environ Microbiol 15(5):1275–1289. doi:10.1111/j.1462-2920.2012.02774.x PubMedCentralPubMedCrossRefGoogle Scholar
  85. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers Y-H, Smith HO (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304(5667):66–74. doi:10.1126/science.1093857 PubMedCrossRefGoogle Scholar
  86. Verhamme DT, Prosser JI, Nicol GW (2011) Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms. ISME J 5(6):1067–1071. doi:10.1038/ismej.2010.191 PubMedCentralPubMedCrossRefGoogle Scholar
  87. Walker CB, de la Torre JR, Klotz MG, Urakawa H, Pinel N, Arp DJ, Brochier-Armanet C, Chain PSG, Chan PP, Gollabgir A, Hemp J, Hügler M, Karr EA, Könneke M, Shin M, Lawton TJ, Lowe T, Martens-Habbena W, Sayavedra-Soto LA, Lang D, Sievert SM, Rosenzweig AC, Manning G, Stahl DA (2010) Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proc Natl Acad Sci USA 107(19):8818–8823. doi:10.1073/pnas.0913533107 PubMedCentralPubMedCrossRefGoogle Scholar
  88. Wang J, Gu J-D (2012) Dominance of Candidatus Scalindua species in anammox community revealed in soils with different duration of rice paddy cultivation in Northeast China. Appl Microbiol Biotechnol 97(4):1785–1798. doi:10.1007/s00253-012-4036-x PubMedCentralPubMedCrossRefGoogle Scholar
  89. Wang Y-F, Feng Y-Y, Ma X, Gu J-D (2013) Seasonal dynamics of ammonia/ammonium-oxidizing prokaryotes in oxic and anoxic wetland sediments of subtropical coastal mangrove. Appl Microbiol Biotechnol 97(17):7919–7934. doi:10.1007/s00253-012-4510-5 PubMedCentralPubMedCrossRefGoogle Scholar
  90. Wang Y-F, Gu J-D (2013) Higher diversity of ammonia/ammonium-oxidizing prokaryotes in constructed freshwater wetland than natural coastal marine wetland. Appl Microbiol Biotechnol 97:7015–7033. doi:10.1007/s00253-012-4430-4 PubMedCentralPubMedCrossRefGoogle Scholar
  91. Whitby CB, Saunders JR, Rodriguez J, Pickup RW, McCarthy A (1999) Phylogenetic differentiation of two closely related Nitrosomonas spp. that inhabit different sediment environments in an oligotrophic freshwater lake. Appl Environ Microbiol 65(11):4855–4862PubMedCentralPubMedGoogle Scholar
  92. Winogradsky S (1890) Investigations on nitrifying organisms. Ann Inst Pasteur 4:213–321Google Scholar
  93. Yang G-F, Zhang Q-Q, Jin R-C (2013) Changes in the nitrogen removal performance and the properties of granular sludge in an Anammox system under oxytetracycline (OTC) stress. Bioresour Technol 129:65–71PubMedCrossRefGoogle Scholar
  94. Yarwood S, Brewer E, Yarwood R, Lajtha K, Myrold D (2013) Soil microbe active community composition and capability of responding to litter addition after 12 years of no inputs. Appl Environ Microbiol 79(4):1385–1392. doi:10.1128/aem.03181-12 PubMedCentralPubMedCrossRefGoogle Scholar
  95. Zhang CL, Ye Q, Huang Z, Li W, Chen J, Song Z, Zhao W, Bagwell C, Inskeep WP, Ross C, Gao L, Wiegel J, Romanek CS, Shock EL, Hedlund BP (2008) Global occurrence of archaeal amoA genes in terrestrial hot springs. Appl Environ Microbiol 74(20):6417–6426. doi:10.1128/aem.00843-08 PubMedCentralPubMedCrossRefGoogle Scholar
  96. Zhang Y, Ruan X-H, Op den Camp HJM, Toine JM S, Mike SM J, Schmid MC (2007) Diversity and abundance of aerobic and anaerobic ammonium-oxidizing bacteria in freshwater sediments of the Xinyi River (China). Environ Microbiol 9(9):2375–2382PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Laboratory of Microbial EcologyGuangdong Academy of ForestryGuangzhouPeople’s Republic of China
  2. 2.Laboratory of Environmental Microbiology and Toxicology, School of Biological SciencesThe University of Hong KongHong Kong SARPeople’s Republic of China
  3. 3.Department of Civil EngineeringThe University of Hong KongHong Kong SARPeople’s Republic of China
  4. 4.The Swire Institute of Marine ScienceThe University of Hong KongHong Kong SARPeople’s Republic of China

Personalised recommendations