Advertisement

Applied Microbiology and Biotechnology

, Volume 97, Issue 24, pp 10521–10529 | Cite as

A comparison of two 16S rRNA gene-based PCR primer sets in unraveling anammox bacteria from different environmental samples

  • Ping Han
  • Yu-Tzu Huang
  • Jih-Gaw Lin
  • Ji-Dong Gu
Methods and protocols

Abstract

Two 16S rRNA gene-based PCR primer sets (Brod541F/Amx820R and A438f/A684r) for detecting anammox bacteria were compared using sediments from Mai Po wetlands (MP), the South China Sea (SCS), a freshwater reservoir (R2), and sludge granules from a wastewater treatment plant (A2). By comparing their ability in profiling anammox bacteria, the recovered diversity, community structure, and abundance of anammox bacteria among all these diverse samples indicated that A438f/A684r performed better than Brod541F/Amx820R in retrieving anammox bacteria from these different environmental samples. Five Scalindua subclusters (zhenghei-I, SCS-I, SCS-III, arabica, and brodae) dominated in SCS whereas two Scalindua subclusters (zhenghei-II and wagneri) and one cluster of Kuenenia dominated in MP. R2 showed a higher diversity of anammox bacteria with two new retrieved clusters (R2-New-1 and R2-New-2), which deserves further detailed study. The dominance of Brocadia in sample A2 was supported by both of the primer sets used. Results collectively indicate strongly niche-specific community structures of anammox bacteria in different environments, and A438f/A684r is highly recommended for screening anammox bacteria from various environments when dealing with a collection of samples with diverse physiochemical characteristics.

Keywords

Anammox Detection Diversity PCR primer Abundance Distribution 

Notes

Acknowledgments

This research project was supported in part by a Ph.D. studentship from The University of Hong Kong (PH), Hong Kong GRC GRF grant no. HKU_701913 (J-DG), Leaderman & Associates in Taipei (JGL and YTH), and Environmental and Conservation Fund grant no. 15/2011 (J-DG). Ms. Jessie Lai and Ms. Kelly Lau were thanked for their laboratory assistance.

References

  1. Borin S, Mapelli F, Rolli E, Song B, Tobias C, Schmid MC, De Lange GJ, Reichart GJ, Schouten S, Jetten M, Daffonchio D (2013) Anammox bacterial populations in deep marine hypersaline gradient systems. Extremophiles 17(2):289–299PubMedCrossRefGoogle Scholar
  2. Cao H, Hong Y, Li M, Gu J-D (2012) Community shift of ammonia-oxidizing bacteria along an anthropogenic pollution gradient from the Pearl River Delta to the South China Sea. Appl Microbiol Biotechnol 94(1):247–259PubMedCrossRefGoogle Scholar
  3. Dang HY, Chen RP, Wang L, Guo LZ, Chen PP, Tang ZW, Tian F, Li SZ, Klotz MG (2010) Environmental factors shape sediment anammox bacterial communities in hypernutrified Jiaozhou Bay, China. Appl Environ Microbiol 76(21):7036–7047PubMedCrossRefGoogle Scholar
  4. Ferris MJ, Muyzer G, Ward DM (1996) Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl Environ Microbiol 62(2):340–346PubMedGoogle Scholar
  5. Han P, Gu J-D (2013) More refined diversity of anammox bacteria recovered and distribution in different ecosystems. Appl Microbiol Biotechnol 97(8):3653–3663PubMedCrossRefGoogle Scholar
  6. Han P, Li M, Gu J-D (2013) Biases in community structures of ammonia/ammonium-oxidizing microorganisms caused by insufficient DNA extractions from Baijiang soil revealed by comparative analysis of coastal wetland sediment and rice paddy soil. Appl Microbiol Biotechnol 97:8741–8756Google Scholar
  7. Hong YG, Li M, Cao H, Gu J-D (2011a) Residence of habitat-specific anammox bacteria in the deep-sea subsurface sediments of the South China Sea: analyses of marker gene abundance with physical chemical parameters. Microb Ecol 62(1):36–47PubMedCrossRefGoogle Scholar
  8. Hong YG, Yin B, Zheng TL (2011b) Diversity and abundance of anammox bacterial community in the deep-ocean surface sediment from equatorial Pacific. Appl Microbiol Biotechnol 89(4):1233–1241PubMedCrossRefGoogle Scholar
  9. Humbert S, Tarnawski S, Fromin N, Mallet MP, Aragno M, Zopfi J (2010) Molecular detection of anammox bacteria in terrestrial ecosystems: distribution and diversity. ISME J 4(3):450–454PubMedCrossRefGoogle Scholar
  10. Humbert S, Zopfi J, Tarnawski SE (2012) Abundance of anammox bacteria in different wetland soils. Env Microbiol Rep 4(5):484–490CrossRefGoogle Scholar
  11. Jetten MS, Niftrik LV, Strous M, Kartal B, Keltjens JT, OpdenCamp HJ (2009) Biochemistry and molecular biology of anammox bacteria. Crit Rev Biochem Mol Biol 44:65–84PubMedGoogle Scholar
  12. Junier P, Molina V, Dorador C, Hadas O, Kim OS, Junier T, Witzel JP, Imhoff JF (2010) Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment. Appl Microbiol Biotechnol 85(3):425–440PubMedCrossRefGoogle Scholar
  13. Kartal B, Rattray J, van Niftrik LA, van de Vossenberg J, Schmid MC, Webb RI, Schouten S, Fuerst JA, Damste JS, Jetten MS, Strous M (2007) Candidatus “Anammoxoglobus propionicus” a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. Syst Appl Microbiol 30(1):39–49Google Scholar
  14. Kartal B, van Niftrik L, Rattray J, van de Vossenberg JL, Schmid MC, Sinninghe Damste J, Jetten MS, Strous M (2008) Candidatus ‘Brocadia fulgida’: an autofluorescent anaerobic ammonium oxidizing bacterium. FEMS Microbiol Ecol 63(1):46–55Google Scholar
  15. Kartal B, Geerts W, Jetten MS (2011) Cultivation, detection, and ecophysiology of anaerobic ammonium-oxidizing bacteria. Methods Enzymol 486:89–108PubMedCrossRefGoogle Scholar
  16. Kirkpatrick JB, Fuchsman CA, Yakushev E, Staley JT, Murray JW (2012) Concurrent activity of anammox and denitrifying bacteria in the Black Sea. Front Microbiol 3:256PubMedCrossRefGoogle Scholar
  17. Konovalov SK, Fuchsman CA, Belokopitov V, Murray JW (2008) Modeling the distribution of nitrogen species and isotopes in the water column of the Black Sea. Mar Chem 111(1–2):106–124CrossRefGoogle Scholar
  18. Kuypers MM, Sliekers AO, Lavik G, Schmid M, Jorgensen BB, Kuenen JG, Sinninghe Damste JS, Strous M, Jetten MS (2003) Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422(6932):608–611PubMedCrossRefGoogle Scholar
  19. Lam P, Jensen MM, Lavik G, McGinnis DF, Muller B, Schubert CJ, Amann R, Thamdrup B, Kuypers MM (2007) Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea. Proc Natl Acad Sci U S A 104(17):7104–7109PubMedCrossRefGoogle Scholar
  20. Li M, Hong YG, Klotz MG, Gu J-D (2010) A comparison of primer sets for detecting 16S rRNA and hydrazine oxidoreductase genes of anaerobic ammonium-oxidizing bacteria in marine sediments. Appl Microbiol Biot 86(2):781–790CrossRefGoogle Scholar
  21. Li M, Cao H, Hong YG, Gu J-D (2011a) Seasonal dynamics of anammox bacteria in estuarial sediment of the mai po nature reserve revealed by analyzing the 16s rRNA and hydrazine oxidoreductase (hzo) genes. Microbes Environ 26(1):15–22PubMedCrossRefGoogle Scholar
  22. Li M, Ford T, Li X, Gu J-D (2011b) Cytochrome cd1-containing nitrite reductase encoding gene nirS as a new functional biomarker for detection of anaerobic ammonium oxidizing (anammox) bacteria. Environ Sci Technol 45(8):3547–3553PubMedCrossRefGoogle Scholar
  23. Li M, Hong YG, Cao HL, Gu J-D (2011c) Mangrove trees affect the community structure and distribution of anammox bacteria at an anthropogenic-polluted mangrove in the Pearl River Delta reflected by 16S rRNA and hydrazine oxidoreductase (HZO) encoding gene analyses. Ecotoxicology 20(8):1780–1790PubMedCrossRefGoogle Scholar
  24. Li M, Cao H, Hong Y, Gu J-D (2013a) Using the variation of anammox bacteria community structures as a bio-indicator for anthropogenic/terrestrial nitrogen inputs in the Pearl River Delta (PRD). Appl Microbiol Biotechnol. doi: 10.1007/s00253-013-4990-y Google Scholar
  25. Li M, Hong Y, Cao H, Gu J-D (2013b) Community structures and distribution of anaerobic ammonium oxidizing and nirs-encoding nitrite-reducing bacteria in surface sediments of the South China Sea. Microb Ecol. doi: 10.1007/s00248-012-0175-y Google Scholar
  26. Li M, Hong Y, Cao H, Klotz MG, Gu J-D (2013c) Diversity, abundance, and distribution of NO-forming nitrite reductase-encoding genes in deep-sea subsurface sediments of the South China Sea. Geobiology 11(2):170–179PubMedCrossRefGoogle Scholar
  27. Neef A, Amann R, Schlesner H, Schleifer KH (1998) Monitoring a widespread bacterial group: in situ detection of planctomycetes with 16S rRNA-targeted probes. Microbiology 144(Pt 12):3257–3266PubMedCrossRefGoogle Scholar
  28. Oshiki M, Shimokawa M, Fujii N, Satoh H, Okabe S (2011) Physiological characteristics of the anaerobic ammonium-oxidizing bacterium ‘Candidatus Brocadia sinica’. Microbiology 157(Pt 6):1706–1713PubMedCrossRefGoogle Scholar
  29. Penton CR, Devol AH, Tiedje JM (2006) Molecular evidence for the broad distribution of anaerobic ammonium-oxidizing bacteria in freshwater and marine sediments. Appl Environ Microbiol 72(10):6829–6832PubMedCrossRefGoogle Scholar
  30. Quan ZX, Rhee SK, Zuo JE, Yang Y, Bae JW, Park JR, Lee ST, Park YH (2008) Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor. Environ Microbiol 10(11):3130–3139PubMedCrossRefGoogle Scholar
  31. Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71(3):1501–1506PubMedCrossRefGoogle Scholar
  32. Schmid M, Twachtmann U, Klein M, Strous M, Juretschko S, Jetten M, Metzger JW, Schleifer KH, Wagner M (2000) Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Syst Appl Microbiol 23(1):93–106PubMedCrossRefGoogle Scholar
  33. Schmid M, Walsh K, Webb R, Rijpstra WI, van de Pas-Schoonen K, Verbruggen MJ, Hill T, Moffett B, Fuerst J, Schouten S, Damste JS, Harris J, Shaw P, Jetten M, Strous M (2003) Candidatus “Scalindua brodae”, sp. nov., Candidatus “Scalindua wagneri”, sp. nov., two new species of anaerobic ammonium oxidizing bacteria. SystAppl Microbiol 26(4):529–538Google Scholar
  34. Schmid MC, Maas B, Dapena A, van de Pas-Schoonen K, van de Vossenberg J, Kartal B, van Niftrik L, Schmidt I, Cirpus I, Kuenen JG, Wagner M, Sinninghe Damste JS, Kuypers M, Revsbech NP, Mendez R, Jetten MS, Strous M (2005) Biomarkers for in situ detection of anaerobic ammonium-oxidizing (anammox) bacteria. Appl Environ Microbiol 71(4):1677–1684PubMedCrossRefGoogle Scholar
  35. Song B, Tobias CR (2011) Molecular and stable isotope methods to detect and measure anaerobic ammonium oxidation (anammox) in aquatic ecosystems. Methods Enzymol 496:63–89PubMedCrossRefGoogle Scholar
  36. Sonthiphand P, Neufeld JD (2013) Evaluating primers for profiling anaerobic ammonia oxidizing bacteria within freshwater environments. PLoS One 8(3):e57242PubMedCrossRefGoogle Scholar
  37. Strous M, Pelletier E, Mangenot S, Rattei T, Lehner A, Taylor MW, Horn M, Daims H, Bartol-Mavel D, Wincker P, Barbe V, Fonknechten N, Vallenet D, Segurens B, Schenowitz-Truong C, Medigue C, Collingro A, Snel B, Dutilh BE, Op den Camp HJ, van der Drift C, Cirpus I, van de Pas-Schoonen KT, Harhangi HR, van Niftrik L, Schmid M, Keltjens J, van de Vossenberg J, Kartal B, Meier H, Frishman D, Huynen MA, Mewes HW, Weissenbach J, Jetten MS, Wagner M, Le Paslier D (2006) Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature 440(7085):790–794PubMedCrossRefGoogle Scholar
  38. Tal Y, Watts JE, Schreier HJ (2005) Anaerobic ammonia-oxidizing bacteria and related activity in Baltimore inner harbor sediment. Appl Environ Microbiol 71(4):1816–1821PubMedCrossRefGoogle Scholar
  39. van de Vossenberg J, Rattray JE, Geerts W, Kartal B, van Niftrik L, van Donselaar EG, Sinninghe Damste JS, Strous M, Jetten MS (2008) Enrichment and characterization of marine anammox bacteria associated with global nitrogen gas production. Environ Microbiol 10(11):3120–3129PubMedCrossRefGoogle Scholar
  40. Wang J, Gu J-D (2013a) Dominance of Candidatus Scalindua species in anammox community revealed in soils with different duration of rice paddy cultivation in Northeast China. Appl Microbiol Biotechnol 97(4):1785–1798PubMedCrossRefGoogle Scholar
  41. Wang YF, Gu J-D (2013b) Higher diversity of ammonia/ammonium-oxidizing prokaryotes in constructed freshwater wetland than natural coastal marine wetland. Appl Microbiol Biotechnol 97(15):7015–7033PubMedCrossRefGoogle Scholar
  42. Wang YF, Feng YY, Ma X, Gu J-D (2013) Seasonal dynamics of ammonia/ammonium-oxidizing prokaryotes in oxic and anoxic wetland sediments of subtropical coastal mangrove. Appl Microbiol Biotechnol 97(17):7919–7934PubMedCrossRefGoogle Scholar
  43. Woebken D, Lam P, Kuypers MM, Naqvi SW, Kartal B, Strous M, Jetten MS, Fuchs BM, Amann R (2008) A microdiversity study of anammox bacteria reveals a novel Candidatus Scalindua phylotype in marine oxygen minimum zones. Environ Microbiol 10(11):3106–3019Google Scholar
  44. Zhu G, Wang S, Wang Y, Wang C, Risgaard-Petersen N, Jetten MS, Yin C (2011) Anaerobic ammonia oxidation in a fertilized paddy soil. ISME J 5(12):1905–1912PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ping Han
    • 1
  • Yu-Tzu Huang
    • 2
  • Jih-Gaw Lin
    • 3
  • Ji-Dong Gu
    • 1
    • 4
  1. 1.Laboratory of Environmental Microbiology and Toxicology, School of Biological SciencesThe University of Hong KongHong Kong SARHong Kong, People’s Republic of China
  2. 2.Department of Bioenvironmental Engineering and Research Center for Analysis and IdentificationChung Yuan Christian UniversityJhong-Li CityTaiwan
  3. 3.Institute of Environmental EngineeringNational Chiao Tung UniversityHsinchu CityTaiwan
  4. 4.The Swire Institute of Marine ScienceThe University of Hong KongHong Kong SARHong Kong, People’s Republic of China

Personalised recommendations