Applied Microbiology and Biotechnology

, Volume 98, Issue 6, pp 2729–2737 | Cite as

Successful operation of continuous reactors at short retention times results in high-density, fast-rate Dehalococcoides dechlorinating cultures

  • Anca G. Delgado
  • Devyn Fajardo-Williams
  • Sudeep C. Popat
  • César I. Torres
  • Rosa Krajmalnik-Brown
Environmental biotechnology

Abstract

The discovery of Dehalococcoides mccartyi reducing perchloroethene and trichloroethene (TCE) to ethene was a key landmark for bioremediation applications at contaminated sites. D. mccartyi-containing cultures are typically grown in batch-fed reactors. On the other hand, continuous cultivation of these microorganisms has been described only at long hydraulic retention times (HRTs). We report the cultivation of a representative D. mccartyi-containing culture in continuous stirred-tank reactors (CSTRs) at a short, 3-d HRT, using TCE as the electron acceptor. We successfully operated 3-d HRT CSTRs for up to 120 days and observed sustained dechlorination of TCE at influent concentrations of 1 and 2 mM TCE to ≥97 % ethene, coupled to the production of 1012D. mccartyi cells Lculture−1. These outcomes were possible in part by using a medium with low bicarbonate concentrations (5 mM) to minimize the excessive proliferation of microorganisms that use bicarbonate as an electron acceptor and compete with D. mccartyi for H2. The maximum conversion rates for the CSTR-produced culture were 0.13 ± 0.016, 0.06 ± 0.018, and 0.02 ± 0.007 mmol Cl Lculture−1 h−1, respectively, for TCE, cis-dichloroethene, and vinyl chloride. The CSTR operation described here provides the fastest laboratory cultivation rate of high-cell density Dehalococcoides cultures reported in the literature to date. This cultivation method provides a fundamental scientific platform for potential future operations of such a system at larger scales.

Keywords

Chemostat Dehalococcoides Geobacter Organohalide respiration Bioremediation Microbial community management 

Supplementary material

253_2013_5263_MOESM1_ESM.pdf (374 kb)
ESM 1(PDF 374 kb)

References

  1. ATDSR (2011) Priority list of hazardous substances. Agency for Toxic Substances and Disease RegistryGoogle Scholar
  2. Aziz CE, Wymore RA, Steffan RJ (2012) Bioaugmentation considerations. In: Stroo HF, Leeson A, Ward HC (eds) Bioaugmentation for groundwater remediation. Springer, New York, pp 141–169Google Scholar
  3. Berggren DRV, Marshall IPG, Azizian MF, Spormann AM, Semprini L (2013) Effects of sulfate reduction on the bacterial community and kinetic parameters of a dechlorinating culture under chemostat growth conditions. Environ Sci Technol 47(4):1879–1886PubMedCrossRefGoogle Scholar
  4. Carr CS, Garg S, Hughes JB (2000) Effect of dechlorinating bacteria on the longevity and composition of PCE-containing nonaqueous phase liquids under equilibrium dissolution conditions. Environ Sci Technol 34(6):1088–1094CrossRefGoogle Scholar
  5. Chambon JC, Bjerg PL, Scheutz C, Bælum J, Jakobsen R, Binning PJ (2013) Review of reactive kinetic models describing reductive dechlorination of chlorinated ethenes in soil and groundwater. Biotechnol Bioeng 110(1):1–23PubMedGoogle Scholar
  6. Cheng D, He JZ (2009) Isolation and characterization of “Dehalococcoides” sp strain MB, which dechlorinates tetrachloroethene to trans-1,2-dichloroethene. Appl Environ Microbiol 75(18):5910–5918PubMedCentralPubMedCrossRefGoogle Scholar
  7. Delgado AG, Parameswaran P, Fajardo-Williams D, Halden RU, Krajmalnik-Brown R (2012) Role of bicarbonate as a pH buffer and electron sink in microbial dechlorination of chloroethenes. Microb Cell Factories 11(128)Google Scholar
  8. Drzyzga O, Gerritse J, Dijk JA, Elissen H, Gottschal JC (2001) Coexistence of a sulphate-reducing Desulfovibrio species and the dehalorespiring Desulfitobacterium frappieri TCE1 in defined chemostat cultures grown with various combinations of sulphate and tetrachloroethene. Environ Microbiol 3(2):92–99PubMedCrossRefGoogle Scholar
  9. Duhamel M, Edwards EA (2007) Growth and yields of dechlorinators, acetogens, and methanogens during reductive dechlorination of chlorinated ethenes and dihaloelimination of 1,2-dichloroethane. Environ Sci Technol 41(7):2303–2310PubMedCrossRefGoogle Scholar
  10. Ellis DE, Lutz EJ, Odom JM, Buchanan RJ, Bartlett CL, Lee MD, Harkness MR, Deweerd KA (2000) Bioaugmentation for accelerated in situ anaerobic bioremediation. Environ Sci Technol 34(11):2254–2260CrossRefGoogle Scholar
  11. Hoskisson PA, Hobbs G (2005) Continuous culture—making a comeback? Microbiology 151:3153–3159PubMedCrossRefGoogle Scholar
  12. Krajmalnik-Brown R, Holscher T, Thomson IN, Saunders FM, Ritalahti KM, Löffler FE (2004) Genetic identification of a putative vinyl chloride reductase in Dehalococcoides sp. strain BAV1. Appl Environ Microbiol 70(10):6347–6351PubMedCentralPubMedCrossRefGoogle Scholar
  13. Löffler FE, Yan J, Ritalahti KM, Adrian L, Edwards EA, Konstantinidis KT, Muller JA, Fullerton H, Zinder SH, Spormann AM (2013) Dehalococcoides mccartyi gen. nov., sp nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi. Int J Syst Evol Microbiol 63:625–635PubMedCrossRefGoogle Scholar
  14. Magnuson JK, Stern RV, Gossett JM, Zinder SH, Burris DR (1998) Reductive dechlorination of tetrachloroethene to ethene by two-component enzyme pathway. Appl Environ Microbiol 64(4):1270–1275PubMedCentralPubMedGoogle Scholar
  15. Maymó-Gatell X, Chien YT, Gossett JM, Zinder SH (1997) Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276(5318):1568–1571PubMedCrossRefGoogle Scholar
  16. Moran MJ, Zogorski JS, Squillace PJ (2007) Chlorinated solvents in groundwater of the United States. Environ Sci Technol 41(1):74–81PubMedGoogle Scholar
  17. Muller JA, Rosner BM, von Abendroth G, Meshulam-Simon G, McCarty PL, Spormann AM (2004) Molecular identification of the catabolic vinyl chloride reductase from Dehalococcoides sp strain VS and its environmental distribution. Appl Environ Microbiol 70(8):4880–4888PubMedCentralPubMedCrossRefGoogle Scholar
  18. Popat SC, Deshusses MA (2011) Kinetics and inhibition of reductive dechlorination of trichloroethene, cis-1,2-dichloroethene and vinyl chloride in a continuously fed anaerobic biofilm reactor. Environ Sci Technol 45(4):1569–1578PubMedCrossRefGoogle Scholar
  19. Ritalahti KM, Amos BK, Sung Y, Wu QZ, Koenigsberg SS, Löffler FE (2006) Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains. Appl Environ Microbiol 72(4):2765–2774PubMedCentralPubMedCrossRefGoogle Scholar
  20. Sabalowsky AR, Semprini L (2010) Trichloroethene and cis-1,2-dichloroethene concentration-dependent toxicity model simulates anaerobic dechlorination at high concentrations. II: continuous flow and attached growth reactors. Biotechnol Bioeng 107(3):540–549PubMedCrossRefGoogle Scholar
  21. Schaefer CE, Condee CW, Vainberg S, Steffan RJ (2009) Bioaugmentation for chlorinated ethenes using Dehalococcoides sp.: comparison between batch and column experiments. Chemosphere 75(2):141–148PubMedCrossRefGoogle Scholar
  22. Steffan RJ, Vainberg S (2012) Production and handling of Dehalococcoides bioaugmentation cultures. In: Stroo HF, Leeson A, Ward CH (eds) Bioaugmentation for groundwater remediation. Springer, New York, pp 89–115Google Scholar
  23. Sung Y, Fletcher KF, Ritalaliti KM, Apkarian RP, Ramos-Hernandez N, Sanford RA, Mesbah NM, Löffler FE (2006) Geobacter lovleyi sp nov strain SZ, a novel metal-reducing and tetrachloroethene-dechlorinating bacterium. Appl Environ Microbiol 72(4):2775–2782PubMedCentralPubMedCrossRefGoogle Scholar
  24. Tang SQ, Chan WWM, Fletcher KE, Seifert J, Liang XM, Löffler FE, Edwards EA, Adrian L (2013) Functional characterization of reductive dehalogenases by using blue native polyacrylamide gel electrophoresis. Appl Environ Microbiol 79(3):974–981PubMedCentralPubMedCrossRefGoogle Scholar
  25. Tchobanoglous G, Burton FL, Stensel HD (2003) Wasterwater engineering: treatment and reuse. The McGraw-Hill Companies, Inc., New YorkGoogle Scholar
  26. Vainberg S, Condee CW, Steffan RJ (2009) Large-scale production of bacterial consortia for remediation of chlorinated solvent-contaminated groundwater. J Ind Microbiol Biotechnol 36(9):1189–1197PubMedCrossRefGoogle Scholar
  27. Yan J, Ritalahti KM, Wagner DD, Löffler FE (2012) Unexpected specificity of interspecies cobamide transfer from Geobacter spp. to organohalide-respiring Dehalococcoides mccartyi strains. Appl Environ Microbiol 78(18):6630–6636PubMedCentralPubMedCrossRefGoogle Scholar
  28. Yang YR, McCarty PL (1998) Competition for hydrogen within a chlorinated solvent dehalogenating anaerobic mixed culture. Environ Sci Technol 32(22):3591–3597CrossRefGoogle Scholar
  29. Yu SH, Dolan ME, Semprini L (2005) Kinetics and inhibition of reductive dechlorination of chlorinated ethylenes by two different mixed cultures. Environ Sci Technol 39(1):195–205PubMedGoogle Scholar
  30. Zheng D, Carr CS, Hughes JB (2001) Influence of hydraulic retention time on extent of PCE dechlorination and preliminary characterization of the enrichment culture. Bioremediat J 5(2):159–168Google Scholar
  31. Ziv-El M, Delgado AG, Yao Y, Kang DW, Nelson KG, Halden RU, Krajmalnik-Brown R (2011) Development and characterization of DehaloR^2, a novel anaerobic microbial consortium performing rapid dechlorination of TCE to ethene. Appl Microbiol Biotechnol 92(5):1063–1071PubMedCrossRefGoogle Scholar
  32. Ziv-El M, Delgado AG, Yao Y, Kang DW, Nelson KG, Halden RU, Krajmalnik-Brown R (2012a) Development and characterization of DehaloR^2, a novel anaerobic microbial consortium performing rapid dechlorination of TCE to ethene (vol 92, pg 1063, 2011). Appl Microbiol Biotechnol 95(1):273–274CrossRefGoogle Scholar
  33. Ziv-El M, Popat SC, Cai K, Halden RU, Krajmalnik-Brown R, Rittmann BE (2012b) Managing methanogens and homoacetogens to promote reductive dechlorination of trichloroethene with direct delivery of H2 in a membrane biofilm reactor. Biotechnol Bioeng 109(9):2200–2210PubMedCrossRefGoogle Scholar
  34. Ziv-El M, Popat SC, Parameswaran P, Kang DW, Polasko A, Halden RU, Rittmann BE, Krajmalnik-Brown R (2012c) Using electron balances and molecular techniques to assess trichoroethene-induced shifts to a dechlorinating microbial community. Biotechnol Bioeng 109(9):2230–2239PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Anca G. Delgado
    • 1
    • 2
  • Devyn Fajardo-Williams
    • 1
    • 3
  • Sudeep C. Popat
    • 1
  • César I. Torres
    • 1
    • 4
  • Rosa Krajmalnik-Brown
    • 1
    • 3
  1. 1.Swette Center for Environmental Biotechnology, Biodesign InstituteArizona State UniversityTempeUSA
  2. 2.School of Life SciencesArizona State UniversityTempeUSA
  3. 3.School of Sustainable Engineering and the Built EnvironmentArizona State UniversityTempeUSA
  4. 4.School for Engineering of Matter, Transport and EnergyArizona State UniversityTempeUSA

Personalised recommendations