Applied Microbiology and Biotechnology

, Volume 97, Issue 24, pp 10321–10328 | Cite as

Nisin-activated hydrophobic and hydrophilic surfaces: assessment of peptide adsorption and antibacterial activity against some food pathogens

  • Layal Karam
  • Charafeddine Jama
  • Anne-Sophie Mamede
  • Samir Boukla
  • Pascal Dhulster
  • Nour-Eddine Chihib
Biotechnological products and process engineering

Abstract

An effective antimicrobial packaging or food contact surface should be able to kill or inhibit micro-organisms that cause food-borne illnesses. Setting up such systems, by nisin adsorption on hydrophilic and hydrophobic surfaces, is still a matter of debate. For this purpose, nisin was adsorbed on two types of low-density polyethylene: the hydrophobic native film and the hydrophilic acrylic acid-treated surface. The antibacterial activity was compared for those two films and it was highly dependent on the nature of the surface and the nisin-adsorbed amount. The hydrophilic surfaces presented higher antibacterial activity and higher amount of nisin than the hydrophobic surfaces. The effectiveness of the activated surfaces was assessed against Listeria innocua and the food pathogens Listeria monocytogenes, Bacillus cereus, and Staphylococcus aureus. S. aureus was more sensitive than the three other test bacteria toward both nisin-functionalized films. Simulation tests to mimic refrigerated temperature showed that the films were effective at 20 and 4 °C with no significant difference between the two temperatures after 30 min of exposure to culture media.

Keywords

Antibacterial activity Nisin adsorption Listeria Bacillus Staphylococcus Hydrophilic surface 

Supplementary material

253_2013_5259_MOESM1_ESM.pdf (236 kb)
ESM 1(PDF 236 kb)

References

  1. Abee T, Rombouts FM, Hugenholtz J, Guihard G, Letellier L (1994) Mode of action of nisin Z against Listeria monocytogenes Scott A grown at high and low temperatures. Appl Environ Microbiol 60:1962–1968PubMedGoogle Scholar
  2. Appendini P, Hotchkiss JH (2002) Review of antimicrobial food packaging. Innovative Food Sci Emerging Technol 3:113–126. doi:10.1016/S1466-8564(02)00012-7 CrossRefGoogle Scholar
  3. Beuchat LR, Clavero MR, Jaquette CB (1997) Effects of nisin and temperature on survival, growth, and enterotoxin production characteristics of psychrotrophic Bacillus cereus in beef gravy. Appl Environ Microbiol 63:1953–1958PubMedGoogle Scholar
  4. Bower CK, McGuire J, Daeschel MA (1995a) Suppression of Listeria monocytogenes colonization following adsorption of nisin onto silica surfaces. Appl Environ Microbiol 61:992–997PubMedGoogle Scholar
  5. Bower CK, McGuire J, Daeschel MA (1995b) Influences on the antimicrobial activity of surface-adsorbed nisin. J Ind Microbiol 15:227–233. doi:10.1007/BF01569829 PubMedCrossRefGoogle Scholar
  6. Bower CK, Daeschel MA, McGuire J (1998) Protein antimicrobial barriers to bacterial adhesion. J Dairy Sci 81:2771–2778. doi:10.3168/jds.S0022-0302(98)75835-7 PubMedCrossRefGoogle Scholar
  7. Daeschel MA, Mcguire J, Al-Makhlafi H (1992) Antimicrobial activity of nisin adsorbed to hydrophilic and hydrophobic silicon surfaces. J Food Prot 55(9):731–735Google Scholar
  8. Daeschel MA, Mcguire J (1998) Interrelationships between protein surface adsorption and bacterial adhesion. Biotechnol Genet Eng Rev 15:413–438PubMedCrossRefGoogle Scholar
  9. Delves-Broughton J, Blackburn P, Evans RJ, Hugenholtz J (1996) Applications of the bacteriocin, nisin. Antonie Van Leeuwenhoek 69:193–202. doi:10.1007/BF00399424 PubMedCrossRefGoogle Scholar
  10. Elwing H, Welin S, Askendahl A, Lundström I (1988) Adsorption of fibrinogen as a measure of the distribution of methyl groups on silicon surfaces. J Colloid Interface Sci 123:306–308. doi:10.1016/0021-9797(88)90249-4 CrossRefGoogle Scholar
  11. Farber JM, Peterkin PI (1991) Listeria monocytogenes, a food-borne pathogen. Microbiol Rev 55:476–511PubMedGoogle Scholar
  12. Goodman M, Palmer DE, Mierke D, Ro S, Nunami K, Wakamiya T, Fukase K, Horimoto S, Kitazawa M, Fujita H, Kubo A, Shiba T (1991) Conformation of nisin and its fragments using synthesis, NMR and computer simulations. In: Jung G, Sahl H-G (eds) Nisin and novel lantibiotics. Escom, Leiden, p 59Google Scholar
  13. Gupta B, Hilborn JG, Bisson I, Frey P (2001) Plasma-induced graft polymerization of acrylic acid onto poly(ethylene terephthalate) films. J Appl Polym Sci 81:2993–3001. doi:10.1002/app.1749 CrossRefGoogle Scholar
  14. Hennekinne J-A, De Buyser M-L, Dragacci S (2012) Staphylococcus aureus and its food poisoning toxins: characterization and outbreak investigation. FEMS Microbiol Rev 36:815–836. doi:10.1111/j.1574-6976.2011.00311.x PubMedCrossRefGoogle Scholar
  15. Jack RW, Tagg JR, Ray B (1995) Bacteriocins of gram-positive bacteria. Microbiol Rev 59:171–200PubMedGoogle Scholar
  16. Karam L, Jama C, Nuns N, Mamede AS, Dhulster P, Chihib NE (2013) Nisin adsorption on hydrophilic and hydrophobic surfaces: evidence of its interactions and antibacterial activity. J Pept Sci 19:377–385. doi:10.1002/psc.2512 PubMedCrossRefGoogle Scholar
  17. Kim Y-M, An D-S, Park HJ, Park JM, Lee DS (2002) Properties of nisin-incorporated polymer coatings as antimicrobial packaging materials. Packag Technol Sci 15:247–254. doi:10.1002/pts.594 CrossRefGoogle Scholar
  18. Lakamraju M, Mcguire J, Daeschel M (1996) Nisin adsorption and exchange with selected milk proteins at silanized silica surfaces. J Colloid Interface Sci 178:495–504CrossRefGoogle Scholar
  19. Leistner L, Gorris LGM (1995) Food preservation by hurdle technology. Trends Food Sci Technol 6:41–46. doi:10.1016/S0924-2244(00)88941-4 CrossRefGoogle Scholar
  20. Leistner L (2000) Basic aspects of food preservation by hurdle technology. Int J Food Microbiol 55:181–186. doi:10.1016/S0168-1605(00)00161-6 PubMedCrossRefGoogle Scholar
  21. Leung PP, Yousef AE, Shellhammer TH (2003) Antimicrobial properties of nisin-coated polymeric films as influenced by film type and coating conditions. J Food Saf 23:1–12. doi:10.1111/j.1745-4565.2003.tb00347.x CrossRefGoogle Scholar
  22. Neetoo H, Ye M, Chen H (2008) Potential antimicrobials to control Listeria monocytogenes in vacuum-packaged cold-smoked salmon pâté and fillets. Int J Food Microbiol 123:220–227. doi:10.1016/j.ijfoodmicro.2008.02.001 PubMedCrossRefGoogle Scholar
  23. Periago PM, Moezelaar R (2001) Combined effect of nisin and carvacrol at different pH and temperature levels on the viability of different strains of Bacillus cereus. Int J Food Microbiol 68:141–148. doi:10.1016/S0168-1605(01)00461-5 PubMedCrossRefGoogle Scholar
  24. Pol IE, Smid EJ (1999) Combined action of nisin and carvacrol on Bacillus cereus and Listeria monocytogenes. Lett Appl Microbiol 29:166–170. doi:10.1046/j.1365-2672.1999.00606.x PubMedCrossRefGoogle Scholar
  25. Quintavalla S, Vicini L (2002) Antimicrobial food packaging in meat industry. Meat Sci 62:373–380. doi:10.1016/S0309-1740(02)00121-3 PubMedCrossRefGoogle Scholar
  26. Razavi Rohani SM, Moradi M, Mehdizadeh T, Saei-Dehkordi SS, Griffiths MW (2011) The effect of nisin and garlic (Allium sativum L.) essential oil separately and in combination on the growth of Listeria monocytogenes. LWT-Food Sci Technol 44:2260–2265. doi:10.1016/j.lwt.2011.07.020 CrossRefGoogle Scholar
  27. Rouxhet PG, Mozes N, Dengis PB, Dufrêne YF, Gerin PA, Genet MJ (1994) Application of X-ray photoelectron spectroscopy to microorganisms. Colloids Surf B 2:347–369. doi:10.1016/0927-7765(94)80049-9 CrossRefGoogle Scholar
  28. Scannell AG, Hill C, Ross R, Marx S, Hartmeier W, Arendt EK (2000) Development of bioactive food packaging materials using immobilised bacteriocins Lacticin 3147 and Nisaplin®. Int J Food Microbiol 60:241–249. doi:10.1016/S0168-1605(00)00314-7 PubMedCrossRefGoogle Scholar
  29. Shirley DA (1972) High-resolution X-ray photoemission spectrum of the valence bands of gold. Phys Rev B 5:4709–4714. doi:10.1103/PhysRevB.5.4709 CrossRefGoogle Scholar
  30. Singh B, Bernadette Falahee M, Adams MR (2001) Synergistic inhibition of Listeria monocytogenes by nisin and garlic extract. Food Microbiol 18:133–139. doi:10.1006/fmic.2000.0383 CrossRefGoogle Scholar
  31. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85. doi:10.1016/0003-2697(85)90442-7 PubMedCrossRefGoogle Scholar
  32. Song H-J, Richard J (1997) Antilisterial activity of three bacteriocins used at sub minimal inhibitory concentrations and cross-resistance of the survivors. Int J Food Microbiol 36:155–161. doi:10.1016/S0168-1605(97)01254-3 PubMedCrossRefGoogle Scholar
  33. Ter Steeg PF, Hellemons JC, Kok AE (1999) Synergistic actions of nisin, sublethal ultrahigh pressure, and reduced temperature on bacteria and yeast. Appl Environ Microbiol 65:4148–4154PubMedGoogle Scholar
  34. Thomas LV, Wimpenny JW (1996) Investigation of the effect of combined variations in temperature, pH, and NaCl concentration on nisin inhibition of Listeria monocytogenes and Staphylococcus aureus. Appl Environ Microbiol 62:2006–2012PubMedGoogle Scholar
  35. Turgis M, Vu KD, Dupont C, Lacroix M (2012) Combined antimicrobial effect of essential oils and bacteriocins against foodborne pathogens and food spoilage bacteria. Food Res Int 48:696–702. doi:10.1016/j.foodres.2012.06.016 CrossRefGoogle Scholar
  36. Wiechelman KJ, Braun RD, Fitzpatrick JD (1988) Investigation of the bicinchoninic acid protein assay: identification of the groups responsible for color formation. Anal Biochem 175:231–237. doi:10.1016/0003-2697(88)90383-1 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Layal Karam
    • 1
    • 2
  • Charafeddine Jama
    • 2
  • Anne-Sophie Mamede
    • 3
  • Samir Boukla
    • 1
  • Pascal Dhulster
    • 1
  • Nour-Eddine Chihib
    • 1
  1. 1.Laboratoire ProBioGEM, Polytech’LilleVilleneuve d’AscqFrance
  2. 2.Laboratoire UMET, UMR-CNRS 8207, Ecole Nationale Supérieure de Chimie de LilleVilleneuve d’AscqFrance
  3. 3.Unité de Catalyse et de Chimie du Solide, UMR-CNRS 8181, Ecole Nationale Supérieure de Chimie de LilleVilleneuve d’AscqFrance

Personalised recommendations