Applied Microbiology and Biotechnology

, Volume 97, Issue 20, pp 8849–8857 | Cite as

TRAIL and microRNAs in the treatment of prostate cancer: therapeutic potential and role of nanotechnology

  • Ammad Ahmad FarooqiEmail author
  • Giuseppe De Rosa


Disruption of spatiotemporal behavior of intracellular signaling cascades including tumor necrosis factor alpha-related apoptosis-inducing ligand (TRAIL)-mediated signaling in prostate cancer has gained tremendous attention in the past few years. There is an increasing effort in translating the emerging information about TRAIL-mediated signaling obtained through experimental and preclinical data to clinic. Fascinatingly, novel targeting approaches are being developed to enhance the tissue- or subcellular-specific delivery of drugs with considerable focus on prostate cancer. These applications have the potential to revolutionize prostate cancer therapeutic strategies and include the accumulation of drugs in target tissue as well as the selection of internalizing ligands for enhanced receptor-mediated uptake of drugs. In this mini-review, we outline outstanding developments in therapeutic strategies based on the regulation and/or targeting of TRAIL pathway for the treatment of prostate cancer. Moreover, microRNAs (miRNAs), with potential transcriptional and posttranscriptional regulation of gene expression, will be presented for their potential in prostate cancer treatment. Emphasis has been given to the use of delivery approaches, especially based on nanotechnology. Considerably, enhanced information regarding miRNA regulation of TRAIL-mediated signaling in prostate cancer cells may provide potential biomarkers for the characterization of patients as responders and nonresponders of TRAIL-based therapy and could provide rationalized basis for combination therapies with TRAIL death receptor-targeting drugs.


TRAIL miRNA Nanotechnology Prostate cancer Signaling cascades 



The author would like to acknowledge and appreciate the efforts of Miss Maira Mariam for English language editing and better presentation of the review.


  1. Abdalla MO, Karna P, Sajja HK, Mao H, Yates C, Turner T, Aneja R (2011) Enhanced noscapine delivery using uPAR-targeted optical-MR imaging trackable nanoparticles for prostate cancer therapy. J Control Release 149(3):314–322PubMedCrossRefGoogle Scholar
  2. Babar IA, Cheng CJ, Booth CJ, Liang X, Weidhaas JB, Saltzman WM, Slack FJ (2012) Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma. Proc Natl Acad Sci U S A 109(26):E1695–E1704PubMedCrossRefGoogle Scholar
  3. Bae S, Ma K, Kim TH, Lee ES, Oh KT, Park E-S, Lee KC, Youn YS (2012) Doxorubicin-loaded human serum albumin nanoparticles surface-modified with TNF-related apoptosis-inducing ligand and transferrin for targeting multiple tumor types. Biomaterials 33(5):1536–1546PubMedCrossRefGoogle Scholar
  4. Basile L, Pignatello R, Passirani C (2012) Active targeting strategies for anticancer drug nanocarriers. Curr Drug Deliv 9(3):255–268PubMedCrossRefGoogle Scholar
  5. Biray Avcı Ç, Özcan İ, Balcı T, Özer Ö, Gündüz C (2013) Design of polyethylene glycol–polyethylenimine nanocomplexes as non-viral carriers: mir-150 delivery to chronic myeloid leukemia cells. Cell Biol Int. doi: 10.1002/cbin.10157 PubMedGoogle Scholar
  6. Bo Y, Guo G, Yao W (2013) miRNA-mediated tumor specific delivery of TRAIL reduced glioma growth. J Neurooncol 112(1):27–37PubMedCrossRefGoogle Scholar
  7. Boll K, Reiche K, Kasack K, Mörbt N, Kretzschmar A, Tomm J, Verhaegh G, Schalken J, von Bergen M, Horn F (2012) MiR-130a, miR-203 and miR-205 jointly repress key oncogenic pathways and are downregulated in prostate carcinoma. Oncogene 32(3):277–285PubMedCrossRefGoogle Scholar
  8. Cattel L, Ceruti M, Dosio F (2004) From conventional to stealth liposomes: a new frontier in cancer chemotherapy. J Chemother 16(Suppl 4):94–97PubMedGoogle Scholar
  9. Chen J, Yang B, Cheng X, Qiao Y, Tang B, Chen G, Wei J, Liu X, Cheng W, Du P (2012) Salmonella-mediated tumor-targeting TRAIL gene therapy significantly suppresses melanoma growth in mouse model. Cancer Sci 103(2):325–333PubMedCrossRefGoogle Scholar
  10. Chiyomaru T, Yamamura S, Fukuhara S, Hidaka H, Majid S, Saini S, Arora S, Deng G, Shahryari V, Chang I (2013) Genistein up-regulates tumor suppressor microRNA-574-3p in prostate cancer. PloS One 8(3):e58929PubMedCrossRefGoogle Scholar
  11. Cruz LJ, Rueda F, Cordobilla B, Simón L, Hosta L, Albericio F, Domingo JC (2011) Targeting nanosystems to human DCs via Fc receptor as an effective strategy to deliver antigen for immunotherapy. Mol Pharm 8(1):104–116PubMedCrossRefGoogle Scholar
  12. de Antonellis P, Medaglia C, Cusanelli E, Andolfo I, Liguori L, De Vita G, Carotenuto M, Bello A, Formiggini F, Galeone A, De Rosa G, Virgilio A, Scognamiglio I, Sciro M, Basso G, Schulte JH, Cinalli G, Iolascon A, Zollo M (2011) MiR-34a targeting of Notch ligand delta-like 1 impairs CD15+/CD133+ tumor-propagating cells and supports neural differentiation in medulloblastoma. PLoS One 6(9): e24584Google Scholar
  13. De Miguel D, Basáñez G, Sánchez D, Malo PGN, Marzo I, Larrad L, Naval J, Pardo JN, Anel A, Martinez-Lostao L (2013) Liposomes decorated with Apo2L/TRAIL overcome chemoresistance of human hematologic tumor cells. Mol Pharm 10(3):893–904PubMedCrossRefGoogle Scholar
  14. De Rosa G, La Rotonda MI (2009) Nano and microtechnologies for the delivery of oligonucleotides with gene silencing properties. Molecules 14(8):2801–2823Google Scholar
  15. De Rosa G, De Stefano D, Galeone A (2010) Oligonucleotide delivery in cancer therapy. Expert Opin Drug Deliv 7(11):1263–1278Google Scholar
  16. Ding B, Wu X, Fan W, Wu Z, Gao J, Zhang W, Ma L, Xiang W, Zhu Q, Liu J (2011) Anti-DR5 monoclonal antibody-mediated DTIC-loaded nanoparticles combining chemotherapy and immunotherapy for malignant melanoma: target formulation development and in vitro anticancer activity. Int J Nanomedicine 6:1991–2005PubMedGoogle Scholar
  17. Fan H, Hu Q-D, Xu F-J, Liang W-Q, Tang G-P, Yang W-T (2012) In vivo treatment of tumors using host-guest conjugated nanoparticles functionalized with doxorubicin and therapeutic gene pTRAIL. Biomaterials 33(5):1428–1436PubMedCrossRefGoogle Scholar
  18. Farooqi AA, Bhatti S, Ismail M (2012a) TRAIL and vitamins: opting for keys to castle of cancer proteome instead of open sesame. Cancer Cell Int 12(1):22PubMedCrossRefGoogle Scholar
  19. Farooqi AA, Rana A, Riaz AM, Khan A, Ali M, Javed S, Mukhtar S, Minhaj S, Rao JR, Rajpoot J (2012b) NutriTRAILomics in prostate cancer: time to have two strings to one's bow. Mol Biol Rep 39(4):4909–4914PubMedCrossRefGoogle Scholar
  20. Fattal E, De Rosa G (2008) Polymeric nano and microparticles for the delivery of antisense oligonucleotides and SiRNA. In: Nancy Smyth Templeton (ed) Gene and cell therapy: therapeutic mechanisms and strategies, 3rd edn. Taylor & Francis Group, CRC, Boca Raton.Google Scholar
  21. Gabizon A, Martin F (1997) Polyethylene glycol-coated (pegylated) liposomal doxorubicin. Drugs 54(4):15–21PubMedCrossRefGoogle Scholar
  22. Ghosh R, Singh LC, Shohet JM, Gunaratne PH (2013) A gold nanoparticle platform for the delivery of functional microRNAs into cancer cells. Biomaterials 34(3):807–816PubMedCrossRefGoogle Scholar
  23. Graf N, Bielenberg DR, Kolishetti N, Muus C, Banyard J, Farokhzad OC, Lippard SJ (2012) αvβ3 Integrin-targeted PLGA-PEG nanoparticles for enhanced anti-tumor efficacy of a Pt (IV) prodrug. ACS Nano 6(5):4530–4539PubMedCrossRefGoogle Scholar
  24. Gu G, Xia H, Hu Q, Liu Z, Jiang M, Kang T, Miao D, Tu Y, Pang Z, Song Q (2013) PEG-co-PCL nanoparticles modified with MMP-2/9 activatable low molecular weight protamine for enhanced targeted glioblastoma therapy. Biomaterials 34(1):196–208PubMedCrossRefGoogle Scholar
  25. Guo L, Fan L, Ren J, Pang Z, Ren Y, Li J, Wen Z, Qian Y, Zhang L, Ma H (2012) Combination of TRAIL and actinomycin D liposomes enhances antitumor effect in non-small cell lung cancer. Int J Nanomedicine 7:1449–1460PubMedGoogle Scholar
  26. He L, Yao H, Fan L, Liu L, Qiu S, Li X, Gao J, Hao C (2012) MicroRNA-181b expression in prostate cancer tissues and its influence on the biological behavior of the prostate cancer cell line PC-3. Genet Mol Res 12(2):1012–1021CrossRefGoogle Scholar
  27. Holgado MA, Martin-Banderas L, Alvarez-Fuentes J, Fernandez-Arevalo M, Arias JL (2012) Drug targeting to cancer by nanoparticles surface functionalized with special biomolecules. Curr Med Chem 19(19):3188–3195PubMedCrossRefGoogle Scholar
  28. Hu Q, Jiang Q, Jin X, Shen J, Wang K, Li Y, Xu F, Tang G, Li Z (2013) Cationic microRNA-delivering nanovectors with bifunctional peptides for efficient treatment of PANC-1 xenograft model. Biomaterials 34(9):2265–2276PubMedCrossRefGoogle Scholar
  29. Hudson RS, Yi M, Esposito D, Glynn SA, Starks AM, Yang Y, Schetter AJ, Watkins SK, Hurwitz AA, Dorsey TH, Stephens RM, Croce CM, Ambs S (2013) MicroRNA-106b-25 cluster expression is associated with early disease recurrence and targets caspase-7 and focal adhesion in human prostate cancer. Oncogene 32(35):4139–4147Google Scholar
  30. Jin H, Yu Y, Chrisler WB, Xiong Y, Hu D, Lei C (2012) Delivery of microRNA-10b with polylysine nanoparticles for inhibition of breast cancer cell wound healing. Breast Cancer (Auckl) 6:9–19Google Scholar
  31. Kim JK, Choi K-J, Lee M, M-h J, Kim S (2012a) Molecular imaging of a cancer-targeting theragnostics probe using a nucleolin aptamer- and microRNA-221 molecular beacon-conjugated nanoparticle. Biomaterials 33(1):207–217PubMedCrossRefGoogle Scholar
  32. Kim K, Chadalapaka G, Pathi SS, Jin U-H, Lee J-S, Park Y-Y, Cho S-G, Chintharlapalli S, Safe S (2012b) Induction of the transcriptional repressor ZBTB4 in prostate cancer cells by drug-induced targeting of microRNA-17-92/106b-25 clusters. Mol Cancer Ther 11(9):1852–1862PubMedCrossRefGoogle Scholar
  33. Lee AL, Dhillon SH, Wang Y, Pervaiz S, Fan W, Yang YY (2011a) Synergistic anti-cancer effects via co-delivery of TNF-related apoptosis-inducing ligand (TRAIL/Apo2L) and doxorubicin using micellar nanoparticles. Mol Biosyst 7(5):1512–1522PubMedCrossRefGoogle Scholar
  34. Lee AL, Wang Y, Pervaiz S, Fan W, Yang YY (2011b) Synergistic anticancer effects achieved by co-delivery of TRAIL and paclitaxel using cationic polymeric micelles. Macromol Biosci 11(2):296–307PubMedCrossRefGoogle Scholar
  35. Li L, Xie X, Luo J, Liu M, Xi S, Guo J, Kong Y, Wu M, Gao J, Xie Z (2012) Targeted expression of miR-34a using the T-VISA system suppresses breast cancer cell growth and invasion. Mol Ther 20(12):2326–2334PubMedCrossRefGoogle Scholar
  36. Li T, Li D, Sha J, Sun P, Huang Y (2009) MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochem Biophys Res Commun 383(3):280–285PubMedCrossRefGoogle Scholar
  37. Lim SM, Kim TH, Jiang HH, Park CW, Lee S, Chen X, Lee KC (2011) Improved biological half-life and anti-tumor activity of TNF-related apoptosis-inducing ligand (TRAIL) using PEG-exposed nanoparticles. Biomaterials 32(13):3538–3546PubMedCrossRefGoogle Scholar
  38. Liu H, Han Y, Fu H, Liu M, Wu J, Chen X, Zhang S, Chen Y (2013) Construction and expression of sTRAIL–melittin combining enhanced anticancer activity with antibacterial activity in Escherichia coli. Appl Microbiol Biotechnol 97(7):2877–2884PubMedCrossRefGoogle Scholar
  39. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65(1):271–284PubMedCrossRefGoogle Scholar
  40. Majid S, Dar AA, Saini S, Yamamura S, Hirata H, Tanaka Y, Deng G, Dahiya R (2010) MicroRNA-205–directed transcriptional activation of tumor suppressor genes in prostate cancer. Cancer 116(24):5637–5649PubMedCrossRefGoogle Scholar
  41. Marra M, Salzano G, Leonetti C, Porru M, Franco R, Zappavigna S, Liguori G, Botti G, Chieffi P, Lamberti M (2012) New self-assembly nanoparticles and stealth liposomes for the delivery of zoledronic acid: a comparative study. Biotechnol Adv 30(1):302–309PubMedCrossRefGoogle Scholar
  42. Marra M, Salzano G, Leonetti C, Tassone P, Scarsella M, Zappavigna S, Calimeri T, Franco R, Liguori G, Cigliana G (2011) Nanotechnologies to use bisphosphonates as potent anticancer agents: the effects of zoledronic acid encapsulated into liposomes. Nanomedicine 7(6):955–964PubMedCrossRefGoogle Scholar
  43. Moghimi S, Szebeni J (2003) Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res 42(6):463–478PubMedCrossRefGoogle Scholar
  44. Na SJ, Chae SY, Lee S, Park K, Kim K, Park JH, Kwon IC, Jeong SY, Lee KC (2008) Stability and bioactivity of nanocomplex of TNF-related apoptosis-inducing ligand. Int J Pharm 363(1):149–154PubMedCrossRefGoogle Scholar
  45. Nanta R, Kumar D, Meeker D, Rodova M, Van Veldhuizen P, Shankar S, Srivastava R (2013) NVP-LDE-225 (erismodegib) inhibits epithelial–mesenchymal transition and human prostate cancer stem cell growth in NOD/SCID IL2Rγ null mice by regulating Bmi-1 and microRNA-128. Oncogenesis 2(4):e42PubMedCrossRefGoogle Scholar
  46. Nimmanapalli R, Perkins CL, Orlando M, O'Bryan E, Nguyen D, Bhalla KN (2001) Pretreatment with paclitaxel enhances apo-2 ligand/tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis of prostate cancer cells by inducing death receptors 4 and 5 protein levels. Cancer Res 61(2):759–763PubMedGoogle Scholar
  47. Pan G, Ni J, Wei Y-F, G-l Y, Gentz R, Dixit VM (1997a) An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science 277(5327):815–818PubMedCrossRefGoogle Scholar
  48. Pan G, O'Rourke K, Chinnaiyan AM, Gentz R, Ebner R, Ni J, Dixit VM (1997b) The receptor for the cytotoxic ligand TRAIL. Science 276(5309):111–113PubMedCrossRefGoogle Scholar
  49. Pan Y, Jia T, Zhang Y, Zhang K, Zhang R, Li J, Wang L (2012) MS2 VLP-based delivery of microRNA-146a inhibits autoantibody production in lupus-prone mice. Int J Nanomedicine 7:5957–5967PubMedCrossRefGoogle Scholar
  50. Patron JP, Fendler A, Bild M, Jung U, Müller H, Arntzen MØ, Piso C, Stephan C, Thiede B, Mollenkopf H-J (2012) MiR-133b targets antiapoptotic genes and enhances death receptor-induced apoptosis. PLoS One 7(4):e35345PubMedCrossRefGoogle Scholar
  51. Perlstein B, Finniss SA, Miller C, Okhrimenko H, Kazimirsky G, Cazacu S, Lee HK, Lemke N, Brodie S, Umansky F (2013) TRAIL conjugated to nanoparticles exhibits increased anti-tumor activities in glioma cells and glioma stem cells in vitro and in vivo. Neuro Oncol 15(1):29–40PubMedCrossRefGoogle Scholar
  52. Poliseno L, Salmena L, Riccardi L, Fornari A, Song MS, Hobbs RM, Sportoletti P, Varmeh S, Egia A, Fedele G (2010) Identification of the miR-106b 25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation. Sci Signal 3(117):ra29PubMedCrossRefGoogle Scholar
  53. Reis ST, Pontes-Junior J, Antunes AA, Dall'Oglio MF, Dip N, Passerotti CC, Rossini GA, Morais DR, Nesrallah AJ, Piantino C (2012) miR-21 may acts as an oncomir by targeting RECK, a matrix metalloproteinase regulator, in prostate cancer. BMC Urol 12(1):14Google Scholar
  54. Salzano G, Marra M, Porru M, Zappavigna S, Abbruzzese A, La Rotonda M, Leonetti C, Caraglia M, De Rosa G (2011) Self-assembly nanoparticles for the delivery of bisphosphonates into tumors. Int J Pharm 403(1):292–297PubMedCrossRefGoogle Scholar
  55. Sanna V, Sechi M (2012) Nanoparticle therapeutics for prostate cancer treatment. Maturitas 73(1):27–32PubMedCrossRefGoogle Scholar
  56. Schneider P, Thome M, Burns K, Bodmer J-L, Hofmann K, Kataoka T, Holler N, Tschopp J (1997) TRAIL receptors 1 (DR4) and 2 (DR5) signal FADD-dependent apoptosis and activate NF-κB. Immunity 7(6):831–836PubMedCrossRefGoogle Scholar
  57. Schramedei K, Mörbt N, Pfeifer G, Läuter J, Rosolowski M, Tomm J, von Bergen M, Horn F, Brocke-Heidrich K (2011) MicroRNA-21 targets tumor suppressor genes ANP32A and SMARCA4. Oncogene 30(26):2975–2985PubMedCrossRefGoogle Scholar
  58. Semple SC, Klimuk SK, Harasym TO, Dos Santos N, Ansell SM, Wong KF, Maurer N, Stark H, Cullis PR, Hope MJ, Scherrer P (2001) Efficient encapsulation of antisense oligonucleotides in lipid vesicles using ionizable aminolipids: formation of novel small multilamellar vesicle structures. Biochim Biophys Acta 1510(1-2):152–166Google Scholar
  59. Seymour L (1992) Passive tumor targeting of soluble macromolecules and drug conjugates. Crit Rev Ther Drug Carrier Syst 9(2):135–187PubMedGoogle Scholar
  60. Sheridan JP, Marsters SA, Pitti RM, Gurney A, Skubatch M, Baldwin D, Ramakrishnan L, Gray CL, Baker K, Wood WI (1997) Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 277(5327):818–821PubMedCrossRefGoogle Scholar
  61. Shi GH, D-w Y, X-d Y, S-l Z, Dai B, H-l Z, Y-j S, Zhu Y, Y-p Z, W-j X (2010) Involvement of microRNA-21 in mediating chemo-resistance to docetaxel in androgen-independent prostate cancer PC3 cells. Acta Pharmacol Sin 31(7):867–873PubMedCrossRefGoogle Scholar
  62. Shi XB, Xue L, Yang J, Ma A-H, Zhao J, Xu M, Tepper CG, Evans CP, Kung H-J, deVere White RW (2007) An androgen-regulated miRNA suppresses Bak1 expression and induces androgen-independent growth of prostate cancer cells. Proc Natl Acad Sci U S A 104(50):19983–19988PubMedCrossRefGoogle Scholar
  63. Shi XB, Xue L, Ma AH, Tepper CG, Kung HJ (2011) miR-125b promotes growth of prostate cancer xenograft tumor through targeting pro-apoptotic genes. Prostate 71(5):538–549PubMedCrossRefGoogle Scholar
  64. Shukla R, Chanda N, Zambre A, Upendran A, Katti K, Kulkarni RR, Nune SK, Casteel SW, Smith CJ, Vimal J (2012) Laminin receptor specific therapeutic gold nanoparticles (198AuNP-EGCg) show efficacy in treating prostate cancer. Proc Natl Acad Sci U S A 109(31):12426–12431PubMedCrossRefGoogle Scholar
  65. Skidan I, Miao B, Thekkedath RV, Dholakia P, Degterev A, Torchilin V (2009) In vitro cytotoxicity of novel pro-apoptotic agent DM-PIT-1 in PEG-PE-based micelles alone and in combination with TRAIL. Drug Deliv 16(1):45–51PubMedCrossRefGoogle Scholar
  66. Sun D, Layer R, Mueller A, Cichewicz M, Negishi M, Paschal B, Dutta A (2013a) Regulation of several androgen-induced genes through the repression of the miR-99a/let-7c/miR-125b-2 miRNA cluster in prostate cancer cells. Oncogene. doi: 10.1038/onc.2013.77 Google Scholar
  67. Sun K, Deng H-J, Lei S-T, Dong J-Q, Li G-X (2013b) miRNA-338-3p suppresses cell growth of human colorectal carcinoma by targeting smoothened. World J Gastroenterol 19(14):2197–2207PubMedCrossRefGoogle Scholar
  68. Sun NF, Q-y M, Tian A-l H, S-y WR-h, Liu Z-x XL (2012a) Nanoliposome-mediated FL/TRAIL double-gene therapy for colon cancer: in vitro and in vivo evaluation. Cancer Lett 315(1):69–77PubMedCrossRefGoogle Scholar
  69. Sun X, Pang Z, Ye H, Qiu B, Guo L, Li J, Ren J, Qian Y, Zhang Q, Chen J (2012b) Co-delivery of pEGFP-hTRAIL and paclitaxel to brain glioma mediated by an angiopep-conjugated liposome. Biomaterials 33(3):916–924PubMedGoogle Scholar
  70. Szlachcic A, Pala K, Zakrzewska M, Jakimowicz P, Wiedlocha A, Otlewski J (2012) FGF1-gold nanoparticle conjugates targeting FGFR efficiently decrease cell viability upon NIR irradiation. Int J Nanomedicine 7:5915–5927PubMedGoogle Scholar
  71. Tivnan A, Orr WS, Gubala V, Nooney R, Williams DE, McDonagh C, Prenter S, Harvey H, Domingo-Fernández R, Bray IM (2012) Inhibition of neuroblastoma tumor growth by targeted delivery of microRNA-34a using anti-disialoganglioside GD2 coated nanoparticles. PLoS One 7(5):e38129PubMedCrossRefGoogle Scholar
  72. Verdoodt B, Neid M, Vogt M, Kuhn V, Liffers S-T, Palisaar R-J, Noldus J, Tannapfel A, Mirmohammadsadegh A (2013) MicroRNA-205, a novel regulator of the anti-apoptotic protein Bcl2, is downregulated in prostate cancer. Int J Oncol 43(1):307–314PubMedGoogle Scholar
  73. Walczak H, Degli-Esposti MA, Johnson RS, Smolak PJ, Waugh JY, Boiani N, Timour MS, Gerhart MJ, Schooley KA, Smith CA (1997) TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL. EMBO J 16(17):5386–5397PubMedCrossRefGoogle Scholar
  74. Yu R, Mandlekar S, Ruben S, Ni J, Kong AT (2000) Tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in androgen-independent prostate cancer cells. Cancer Res 60(9):2384–2389PubMedGoogle Scholar
  75. Zhao Y, Duan S, Zeng X, Liu C, Davies NM, Li B, Forrest ML (2012) Prodrug strategy for PSMA-targeted delivery of TGX-221 to prostate cancer cells. Mol Pharm 9(6):1705–1716PubMedCrossRefGoogle Scholar
  76. Zhao Y, Li Y, Wang L, Yang H, Wang Q, Qi H, Li S, Zhou P, Liang P, Wang Q (2013) microRNA response elements-regulated TRAIL expression shows specific survival-suppressing activity on bladder cancer. J Exp Clin Cancer Res 32(1):10Google Scholar
  77. Zimmermann TS, Lee AC, Akinc A, Bramlage B, Bumcrot D, Fedoruk MN, Harborth J, Heyes JA, Jeffs LB, John M, Judge AD, Lam K, McClintock K, Nechev LV, Palmer LR, Racie T, Röhl I, Seiffert S, Shanmugam S, Sood V, Soutschek J, Toudjarska I, Wheat AJ, Yaworski E, Zedalis W, Koteliansky V, Manoharan M, Vornlocher HP, MacLachlan I (2006) RNAi-mediated gene silencing in non-human primates. Nature 441(7089):111–114Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Laboratory for Translational Oncology and Personalized MedicineRashid Latif Medical CollegeLahorePakistan
  2. 2.Department of PharmacyUniversità Degli Studi di Napoli Federico IINapoliItaly

Personalised recommendations