Applied Microbiology and Biotechnology

, Volume 98, Issue 6, pp 2699–2707 | Cite as

H2-dependent azoreduction by Shewanella oneidensis MR-1: involvement of secreted flavins and both [Ni–Fe] and [Fe–Fe] hydrogenases

  • Sébastien Le Laz
  • Arlette Kpebe
  • Jean Lorquin
  • Myriam BrugnaEmail author
  • Marc Rousset
Environmental biotechnology


In this paper, the hydrogen (H2)-dependent discoloration of azo dye amaranth by Shewanella oneidensis MR-1 was investigated. Experiments with hydrogenase-deficient strains demonstrated that periplasmic [Ni–Fe] hydrogenase (HyaB) and periplasmic [Fe–Fe] hydrogenase (HydA) are both respiratory hydrogenases of dissimilatory azoreduction in S. oneidensis MR-1. These findings suggest that HyaB and HydA can function as uptake hydrogenases that couple the oxidation of H2 to the reduction of amaranth to sustain cellular growth. This constitutes to our knowledge the first report of the involvement of [Fe-Fe] hydrogenase in a bacterial azoreduction process. Assays with respiratory inhibitors indicated that a menaquinone pool and different cytochromes were involved in the azoreduction process. High-performance liquid chromatography analysis revealed that flavin mononucleotide and riboflavin were secreted in culture supernatant by S. oneidensis MR-1 under H2-dependent conditions with concentration of 1.4 and 2.4 μmol g protein-1, respectively. These endogenous flavins were shown to significantly accelerate the reduction of amaranth at micromolar concentrations acting as electron shuttles between the cell surface and the extracellular azo dye. This work may facilitate a better understanding of the mechanisms of azoreduction by S. oneidensis MR-1 and may have practical applications for microbiological treatments of dye-polluted industrial effluents.


Shewanella oneidensis MR-1 Amaranth Hydrogen Azo dye Flavins 



This work was supported by research grants from the Agence Nationale de la Recherche (EngineeringH2cyano and Algo-H2 projects), the Centre National de la Recherche Scientifique (CNRS), and the Aix-Marseille Université. We are grateful to Dr. Hervé BOTTIN (CEA, LMB, Saclay, France) for kindly providing the AS50, AS51 and AS52 strains of Shewanella oneidensis. We thank Cécile Jourlin-Castelli (CNRS, LCB, Marseille, France) for expert technical assistance and helpful discussions and Marianne Guiral (CNRS, BIP, Marseille, France) for reviewing the manuscript.


  1. Arnold RG, DiChristina TJ, Hoffmann MR (1986) Inhibitor studies of dissimilative Fe(III) reduction by Pseudomonas sp. strain 200 (“Pseudomonas ferrireductans”). Appl Environ Microbiol 52:281–289PubMedCentralPubMedGoogle Scholar
  2. Baffert C, Bertini L, Lautier T, Greco C, Sybirna K, Ezanno P, Etienne E, Soucaille P, Bertrand P, Bottin H, Meynial-Salles I, De Gioia L, Leger C (2011) CO disrupts the reduced H-cluster of Fe–Fe hydrogenase. A combined DFT and protein film voltammetry study. J Am Chem Soc 133:2096–2099PubMedCrossRefGoogle Scholar
  3. Blumel S, Knackmuss HJ, Stolz A (2002) Molecular cloning and characterization of the gene coding for the aerobic azoreductase from Xenophilus azovorans KF46F. Appl Environ Microbiol 68:3948–3955PubMedCentralPubMedCrossRefGoogle Scholar
  4. Borloo J, Vergauwen B, De Smet L, Brige A, Motte B, Devreese B, Van Beeumen J (2007) A kinetic approach to the dependence of dissimilatory metal reduction by Shewanella oneidensis MR-1 on the outer membrane cytochromes c OmcA and OmcB. FEBS J 274:3728–3738PubMedCrossRefGoogle Scholar
  5. Brigé A, Motte B, Borloo J, Buysschaert G, Devreese B, Van Beeumen JJ (2008) Bacterial decolorization of textile dyes is an extracellular process requiring a multicomponent electron transfer pathway. Microb Biotechnol 1:40–52PubMedCentralPubMedGoogle Scholar
  6. Brutinel ED, Gralnick JA (2012) Shuttling happens: soluble flavin mediators of extracellular electron transfer in Shewanella. Appl Microbiol Biotechnol 93:41–48PubMedCrossRefGoogle Scholar
  7. Cai PJ, Xiao X, He YR, Li WW, Chu J, Wu C, He MX, Zhang Z, Sheng GP, Lam MH, Xu F, Yu HQ (2011) Anaerobic biodecolorization mechanism of methyl orange by Shewanella oneidensis MR-1. Appl Microbiol Biotechnol 93:1769–1776PubMedCrossRefGoogle Scholar
  8. Chung KT, Cerniglia CE (1992) Mutagenicity of azo dyes: structure–activity relationships. Mutat Res 277:201–220PubMedCrossRefGoogle Scholar
  9. Covington ED, Gelbmann CB, Kotloski NJ, Gralnick JA (2010) An essential role for UshA in processing of extracellular flavin electron shuttles by Shewanella oneidensis. Mol Microbiol 78:519–532PubMedCrossRefGoogle Scholar
  10. Dawood Z, Brözel VS (1998) Corrosion-enhancing potential of Shewanella putrefaciens isolated from industrial cooling waters. J Appl Microbiol 84:929–936Google Scholar
  11. De Windt W, Aelterman P, Verstraete W (2005) Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls. Environ Microbiol 7:314–325PubMedCrossRefGoogle Scholar
  12. Dubrow SF, Boardman GD, Michelsen DL (1996) Chemical pretreatment and aerobic–anaerobic degradation of textile dye wastewater. In: Reife A, Freeman HS (eds) Environmental chemistry of dyes and pigments. Wiley, New York, pp 75–102Google Scholar
  13. Feng J, Cerniglia CE, Chen H (2011) Toxicological significance of azo dye metabolism by human intestinal microbiota. Front Biosci (Elite Ed) 4:568–586Google Scholar
  14. Garcia-Montano J, Domenech X, Garcia-Hortal JA, Torrades F, Peral J (2008) The testing of several biological and chemical coupled treatments for Cibacron Red FN-R azo dye removal. J Hazard Mater 154:484–490PubMedCrossRefGoogle Scholar
  15. Gomi N, Yoshida S, Matsumoto K, Okudomi M, Konno H, Hisabori T, Sugano Y (2011) Degradation of the synthetic dye amaranth by the fungus Bjerkandera adusta Dec 1: inference of the degradation pathway from an analysis of decolorized products. Biodegradation 22:1239–1245PubMedCrossRefGoogle Scholar
  16. Gottlieb A, Shaw C, Smith A, Wheatley A, Forsythe S (2003) The toxicity of textile reactive azo dyes after hydrolysis and decolourisation. J Biotechnol 101:49–56PubMedCrossRefGoogle Scholar
  17. Gralnick JA, Vali H, Lies DP, Newman DK (2006) Extracellular respiration of dimethyl sulfoxide by Shewanella oneidensis strain MR-1. Proc Natl Acad Sci U S A 103:4669–4674PubMedCentralPubMedCrossRefGoogle Scholar
  18. Heidelberg JF, Paulsen IT, Nelson KE, Gaidos EJ, Nelson WC, Read TD, Eisen JA, Seshadri R, Ward N, Methe B, Clayton RA, Meyer T, Tsapin A, Scott J, Beanan M, Brinkac L, Daugherty S, DeBoy RT, Dodson RJ, Durkin AS, Haft DH, Kolonay JF, Madupu R, Peterson JD, Umayam LA, White O, Wolf AM, Vamathevan J, Weidman J, Impraim M, Lee K, Berry K, Lee C, Mueller J, Khouri H, Gill J, Utterback TR, McDonald LA, Feldblyum TV, Smith HO, Venter JC, Nealson KH, Fraser CM (2002) Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nat Biotechnol 20:1118–1123PubMedCrossRefGoogle Scholar
  19. Hong Y, Chen X, Guo J, Xu Z, Xu M, Sun G (2007a) Effects of electron donors and acceptors on anaerobic reduction of azo dyes by Shewanella decolorationis S12. Appl Microbiol Biotechnol 74:230–238PubMedCrossRefGoogle Scholar
  20. Hong Y, Xu M, Guo J, Xu Z, Chen X, Sun G (2007b) Respiration and growth of Shewanella decolorationis S12 with an Azo compound as the sole electron acceptor. Appl Environ Microbiol 73:64–72PubMedCentralPubMedCrossRefGoogle Scholar
  21. Hong YG, Guo J, Sun GP (2008) Identification of an uptake hydrogenase for hydrogen-dependent dissimilatory azoreduction by Shewanella decolorationis S12. Appl Microbiol Biotechnol 80:517–524PubMedCrossRefGoogle Scholar
  22. Jadhav JP, Parshetti GK, Kalme SD, Govindwar SP (2007) Decolourization of azo dye methyl red by Saccharomyces cerevisiae MTCC 463. Chemosphere 68:394–400PubMedCrossRefGoogle Scholar
  23. Jinqi L, Houtian L (1992) Degradation of azo dyes by algae. Environ Pollut 75:273–278PubMedCrossRefGoogle Scholar
  24. Khalid A, Arshad M, Crowley DE (2008) Accelerated decolorization of structurally different azo dyes by newly isolated bacterial strains. Appl Microbiol Biotechnol 78:361–369PubMedCrossRefGoogle Scholar
  25. Leger C, Dementin S, Bertrand P, Rousset M, Guigliarelli B (2004) Inhibition and aerobic inactivation kinetics of Desulfovibrio fructosovorans NiFe hydrogenase studied by protein film voltammetry. J Am Chem Soc 126:12162–12172PubMedCrossRefGoogle Scholar
  26. Li T, Guthrie JT (2010) Colour removal from aqueous solutions of metal-complex azo dyes using bacterial cells of Shewanella strain J18 143. Bioresour Technol 101:4291–4295PubMedCrossRefGoogle Scholar
  27. Liebgott PP, Leroux F, Burlat B, Dementin S, Baffert C, Lautier T, Fourmond V, Ceccaldi P, Cavazza C, Meynial-Salles I, Soucaille P, Fontecilla-Camps JC, Guigliarelli B, Bertrand P, Rousset M, Leger C (2010) Relating diffusion along the substrate tunnel and oxygen sensitivity in hydrogenase. Nat Chem Biol 6:63–70PubMedCrossRefGoogle Scholar
  28. Liu C, Gorby YA, Zachara JM, Fredrickson JK, Brown CF (2002) Reduction kinetics of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VII) in cultures of dissimilatory metal-reducing bacteria. Biotechnol Bioeng 80:637–649PubMedCrossRefGoogle Scholar
  29. Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR (2008) Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci U S A 105:3968–3973PubMedCentralPubMedCrossRefGoogle Scholar
  30. Meng X, Liu G, Zhou J, Shiang Fu Q, Wang G (2012) Azo dye decolorization by Shewanella aquimarina under saline conditions. Bioresour Technol 114:95–101PubMedCrossRefGoogle Scholar
  31. Meshulam-Simon G, Behrens S, Choo AD, Spormann AM (2007) Hydrogen metabolism in Shewanella oneidensis MR-1. Appl Environ Microbiol 73:1153–1165PubMedCentralPubMedCrossRefGoogle Scholar
  32. Schink B, Stams AM (2006) Syntrophism among prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes SE-11. Springer, New York, pp 309–335CrossRefGoogle Scholar
  33. Stolz A (2001) Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol 56:69–80PubMedCrossRefGoogle Scholar
  34. Sybirna K, Antoine T, Lindberg P, Fourmond V, Rousset M, Mejean V, Bottin H (2008) Shewanella oneidensis: a new and efficient system for expression and maturation of heterologous [Fe–Fe] hydrogenase from Chlamydomonas reinhardtii. BMC Biotechnol 8:73PubMedCentralPubMedCrossRefGoogle Scholar
  35. von Canstein H, Ogawa J, Shimizu S, Lloyd JR (2008) Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl Environ Microbiol 74:615–623CrossRefGoogle Scholar
  36. Wang J, Fu Z, Liu G, Guo N, Lu H, Zhan Y (2013) Mediators-assisted reductive biotransformation of tetrabromobisphenol-A by Shewanella sp. XB. Bioresour Technol 142:192–197PubMedCrossRefGoogle Scholar
  37. Williams PA, Cosme J, Vinkovic DM, Ward A, Angove HC, Day PJ, Vonrhein C, Tickle IJ, Jhoti H (2004) Crystal structures of human cytochrome P450 3A4 bound to metyrapone and progesterone. Science 305:683–686PubMedCrossRefGoogle Scholar
  38. Xu H, Heinze TM, Chen S, Cerniglia CE, Chen H (2007) Anaerobic metabolism of 1-amino-2-naphthol-based azo dyes (Sudan dyes) by human intestinal microflora. Appl Environ Microbiol 73:7759–7762PubMedCentralPubMedCrossRefGoogle Scholar
  39. Zollinger (2003) Color Chemistry : syntheses, properties and applications of organic dyes and pigments, 3rd edn. Wiley-VCH, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sébastien Le Laz
    • 1
  • Arlette Kpebe
    • 1
  • Jean Lorquin
    • 2
  • Myriam Brugna
    • 1
    Email author
  • Marc Rousset
    • 1
  1. 1.CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines, UMR 7281, Institut de Microbiologie de la MéditerranéeAix-Marseille UniversitéMarseille Cedex 20France
  2. 2.Mediterranean Institute of Oceanography (MIO), UMR7294, (CNRS/IRD/AMU), UR235 IRDAix-Marseille UniversitéMarseille Cedex 9France

Personalised recommendations