Advertisement

Applied Microbiology and Biotechnology

, Volume 98, Issue 7, pp 3023–3032 | Cite as

An l-glucitol oxidizing dehydrogenase from Bradyrhizobium japonicum USDA 110 for production of d-sorbose with enzymatic or electrochemical cofactor regeneration

  • Sabrina Gauer
  • Zhijie Wang
  • Harm Otten
  • Mathieu Etienne
  • Morten Jannik Bjerrum
  • Leila Lo Leggio
  • Alain Walcarius
  • Friedrich Giffhorn
  • Gert-Wieland Kohring
Biotechnologically relevant enzymes and proteins

Abstract

A gene in Bradyrhizobium japonicum USDA 110, annotated as a ribitol dehydrogenase (RDH), had 87 % sequence identity (97 % positives) to the N-terminal 31 amino acids of an l-glucitol dehydrogenase from Stenotrophomonas maltophilia DSMZ 14322. The 729-bp long RDH gene coded for a protein consisting of 242 amino acids with a molecular mass of 26.1 kDa. The heterologously expressed protein not only exhibited the main enantio selective activity with d-glucitol oxidation to d-fructose but also converted l-glucitol to d-sorbose with enzymatic cofactor regeneration and a yield of 90 %. The temperature stability and the apparent K m value for l-glucitol oxidation let the enzyme appear as a promising subject for further improvement by enzyme evolution. We propose to rename the enzyme from the annotated RDH gene (locus tag bll6662) from B. japonicum USDA as a d-sorbitol dehydrogenase (EC 1.1.1.14).

Keywords

Dehydrogenase Cofactor regeneration Electrochemistry l-glucitol d-sorbose 

Notes

Acknowledgments

Financial support from the European Community through the FP7-NMP-2007-SMALL 1 collaborative project ERUDESP is gratefully acknowledged. We thank Dr. Josef Zapp, Saarland University, for the NMR and IR determinations, and Birgit Hasper for the technical assistance.

References

  1. Baek SH, Park SJ, Lee HG (2010) d-psicose, a sweet monosaccharide, ameliorate hyperglycemia, and dyslipidemia in C57BL/6 J db/db mice. J Food Sci 75:H49–H53PubMedCrossRefGoogle Scholar
  2. Beerens K, Desmet T, Soetaert W (2012) Enzymes for the biocatalytic production of rare sugars. J Ind Microbiol Biotechnol 39:823–834PubMedCrossRefGoogle Scholar
  3. Bon Saint Côme Y, Lalo H, Wang Z, Kohring GW, Hempelmann R, Etienne M, Walcarius A, Kuhn A (2013) Interest of the sol–gel approach for multiscale tailoring of porous bioelectrode surfaces. Electroanalysis 25:621–629CrossRefGoogle Scholar
  4. Brechtel E, Huwig A, Giffhorn F (2002) l-glucitol catabolism in Stenotrophomonas maltophilia Ac. Appl Environ Microbiol 68:582–587PubMedCentralPubMedCrossRefGoogle Scholar
  5. Chenault HK, Whitesides GM (1989) Lactate dehydrogenase-catalyzed regeneration of NAD from NADH for use in enzyme-catalyzed synthesis. Bioorg Chem 17:400–409CrossRefGoogle Scholar
  6. Frush HL, Isbell HS (1956) Sodium borohydride reduction of aldonic lactones to glucitol. J Am Chem Soc 78:2844–2846CrossRefGoogle Scholar
  7. Gajdizik J, Szamocki R, Natter H, Kohring GW, Giffhorn F, Hempelmann R (2007) Electroenzymatic reactions with sorbitol dehydrogenase on gold electrodes. J Solid State Electrochem 11:144–149CrossRefGoogle Scholar
  8. Granstrom TB, Takata G, Tokuda M, Izumori K (2004) Izumoring: a novel and complete strategy for bioproduction of rare sugars. J Biosci Bioeng 97:89–94PubMedGoogle Scholar
  9. Gumina G, Song GY, Chu CK (2001) l-nucleosides as chemotherapeutic agents. FEMS Microbiol Lett 202:9–15PubMedGoogle Scholar
  10. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580PubMedCrossRefGoogle Scholar
  11. Hollmann F, Schmid A (2004) Electrochemical regeneration of oxidoreductases for cell-free biocatalytic redox reactions. Biocatal Biotransform 22:63–88CrossRefGoogle Scholar
  12. Hollmann F, Arends IWCE, Buehler K (2010) Biocatalytic redox reactions for organic synthesis: nonconventional regeneration methods. ChemCatChem 2:762–782CrossRefGoogle Scholar
  13. Huwig A, Emmel S, Giffhorn F (1996) Preparation of d-sorbose from l-glucitol by bioconversion with Pseudomonas sp Ac. Carbohydr Res 281:183–186PubMedCrossRefGoogle Scholar
  14. Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S, Watanabe A, Idesawa K, Iriguchi M, Kawashima K, Kohara M, Matsumoto M, Shimpo S, Tsuruoka H, Wada T, Yamada M, Tabata S (2002) Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 9:189–197PubMedCrossRefGoogle Scholar
  15. Kavanagh KL, Jornvall H, Persson B, Oppermann U (2008) The SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cell Mol Life Sci 65:3895–3906PubMedCentralPubMedCrossRefGoogle Scholar
  16. Kornberger P, Gajdzik J, Natter H, Wenz G, Giffhorn F, Kohring GW, Hempelmann R (2009) Modification of galactitol dehydrogenase from Rhodobacter sphaeroides D for immobilization on polycrystalline gold surfaces. Langmuir 25:12380–12386PubMedCrossRefGoogle Scholar
  17. Kornberger P, Giffhorn F, Kohring GW (2010) Dehydrogenases, electrochemical co-factor regeneration. In: Flickinger MC (ed) Encyclopedia of industrial biotechnology, bioprocess, bioseparation, and cell technology. Wiley, Hoboken, pp 1888–1898Google Scholar
  18. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  19. Lim YR, Oh DK (2011) Microbial metabolism and biotechnological production of d-allose. Appl Microbiol Biotechnol 91:229–235PubMedCrossRefGoogle Scholar
  20. Lindstad RI, Köll P, McKinley-McNee JS (1998) Substrate specificity of sheep liver sorbitol dehydrogenase. Biochem J 330:479–487PubMedCentralPubMedGoogle Scholar
  21. Livesey G (2003) Health potential of polyols as sugar replacers, with emphasis on low glycaemic properties. Nutr Res Rev 16:163–191PubMedCrossRefGoogle Scholar
  22. Lu Y, Levin GV, Donner TW (2008) Tagatose, a new antidiabetic and obesity control drug. Diabetes Obes Metab 10:109–134PubMedCrossRefGoogle Scholar
  23. Mayerskuntzer H, Reichert A, Schneider KH, Giffhorn F (1994) Isolation and characterization of a l-glucitol dehydrogenase from the newly isolated bacterium Pseudomonas sp Ac. J Biotechnol 36:157–164CrossRefGoogle Scholar
  24. Monedero V, Perez-Martinez G, Yebra MJ (2010) Perspectives of engineering lactic acid bacteria for biotechnological polyol production. Appl Microbiol Biotechnol 86:1003–1015PubMedCrossRefGoogle Scholar
  25. Perez-Iratxeta C, Andrade-Navarro MA (2008) K2D2: estimation of protein secondary structure from circular dichroism spectra. BMC Struct Biol 8:25PubMedCentralPubMedCrossRefGoogle Scholar
  26. Philippsen A, Schirmer T, Stein MA, Giffhorn F, Stetefeld J (2005) Structure of zinc-independent sorbitol dehydrogenase from Rhodobacter sphaeroides at 2.4 Angstrom resolution. Acta Crystallogr D 61:374–379PubMedCrossRefGoogle Scholar
  27. Reetz MT (2012) Laboratory evolution of stereoselective enzymes as a means to expand the toolbox of organic chemists. Tetrahedron 68:7530–7548CrossRefGoogle Scholar
  28. Schauder S, Schneider KH, Giffhorn F (1995) Polyol metabolism of Rhodobacter sphaeroides: biochemical characterization of a short-chain sorbitol dehydrogenase. Microbiology 141:1857–1863PubMedCrossRefGoogle Scholar
  29. Schneider KH, Giffhorn F (1991) Sorbitol dehydrogenase from Pseudomonas sp: purification, characterization and application to quantitative-determination of sorbitol. Enzym Microb Technol 13:332–337CrossRefGoogle Scholar
  30. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85PubMedCrossRefGoogle Scholar
  31. Steckhan E (1994) Electroenzymatic synthesis. Top Curr Chem 170:83–111CrossRefGoogle Scholar
  32. van Loveren C (2004) Sugar alcohols: what is the evidence for caries preventive and caries-therapeutic effects? Caries Res 38:286–293PubMedCrossRefGoogle Scholar
  33. Wang Z, Etienne M, Kohring GW, Walcarius A (2010) Critical effect of polyelectrolytes on the electrochemical response of dehydrogenases entrapped in sol–gel thin films. Electroanalysis 22:2092–2100CrossRefGoogle Scholar
  34. Wang Z, Etienne M, Kohring GW, Bon-Saint-Come Y, Kuhn A, Walcarius A (2011) Electrochemically assisted deposition of sol–gel bio-composite with co-immobilized dehydrogenase and diaphorase. Electrochim Acta 56:9032–9040CrossRefGoogle Scholar
  35. Wang Z, Etienne M, Quiles F, Kohring GW, Walcarius A (2012) Durable cofactor immobilization in sol–gel bio-composite thin films for reagentless biosensors and bioreactors using dehydrogenases. Biosens Bioelectron 32:111–117PubMedCrossRefGoogle Scholar
  36. Wichmann D, Vasic-Racki D (2005) Cofactor regeneration at the lab scale. Adv Biochem Eng Biotechnol 92:225–260PubMedGoogle Scholar
  37. Zumbé A, Lee A, Storey D (2001) Polyols in confectionery: the route to sugar-free, reduced sugar and reduced calorie confectionery. Br J Nutr 85:S31–S45PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sabrina Gauer
    • 1
  • Zhijie Wang
    • 2
  • Harm Otten
    • 3
  • Mathieu Etienne
    • 2
  • Morten Jannik Bjerrum
    • 3
  • Leila Lo Leggio
    • 3
  • Alain Walcarius
    • 2
  • Friedrich Giffhorn
    • 1
  • Gert-Wieland Kohring
    • 1
  1. 1.Microbiology, Campus Bldg. A1.5Saarland UniversitySaarbrückenGermany
  2. 2.Physical Chemistry and Microbiology for the Environment CNRSUniversité de LorraineVilliers-lès-NancyFrance
  3. 3.Department of ChemistryUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations