Applied Microbiology and Biotechnology

, Volume 97, Issue 19, pp 8729–8739 | Cite as

Genome-scale metabolic model for Lactococcus lactis MG1363 and its application to the analysis of flavor formation

  • Nicolas A. L. Flahaut
  • Anne Wiersma
  • Bert van de Bunt
  • Dirk E. Martens
  • Peter J. Schaap
  • Lolke Sijtsma
  • Vitor A. Martins dos Santos
  • Willem M. de Vos
Applied microbial and cell physiology

Abstract

Lactococcus lactis subsp. cremoris MG1363 is a paradigm strain for lactococci used in industrial dairy fermentations. However, despite of its importance for process development, no genome-scale metabolic model has been reported thus far. Moreover, current models for other lactococci only focus on growth and sugar degradation. A metabolic model that includes nitrogen metabolism and flavor-forming pathways is instrumental for the understanding and designing new industrial applications of these lactic acid bacteria. A genome-scale, constraint-based model of the metabolism and transport in L. lactis MG1363, accounting for 518 genes, 754 reactions, and 650 metabolites, was developed and experimentally validated. Fifty-nine reactions are directly or indirectly involved in flavor formation. Flux Balance Analysis and Flux Variability Analysis were used to investigate flux distributions within the whole metabolic network. Anaerobic carbon-limited continuous cultures were used for estimating the energetic parameters. A thorough model-driven analysis showing a highly flexible nitrogen metabolism, e.g., branched-chain amino acid catabolism which coupled with the redox balance, is pivotal for the prediction of the formation of different flavor compounds. Furthermore, the model predicted the formation of volatile sulfur compounds as a result of the fermentation. These products were subsequently identified in the experimental fermentations carried out. Thus, the genome-scale metabolic model couples the carbon and nitrogen metabolism in L. lactis MG1363 with complete known catabolic pathways leading to flavor formation. The model provided valuable insights into the metabolic networks underlying flavor formation and has the potential to contribute to new developments in dairy industries and cheese-flavor research.

Keywords

Genome-scale Constraint-based model Metabolic network Lactococcus lactis Flavors Chemostat culture 

Supplementary material

253_2013_5140_MOESM1_ESM.xlsx (248 kb)
ESM 1(XLSX 247 kb)
253_2013_5140_MOESM2_ESM.docx (58 kb)
ESM 2(DOCX 58.4 kb)
253_2013_5140_MOESM3_ESM.pdf (591 kb)
ESM 3(PDF 590 kb)
253_2013_5140_MOESM4_ESM.xlsx (56 kb)
ESM 4(XLSX 55 kb)
253_2013_5140_MOESM5_ESM.xlsx (51 kb)
ESM 5(XLSX 50 kb)
253_2013_5140_MOESM6_ESM.xml (1.2 mb)
ESM 6(XML 1291 kb)

References

  1. Ardö Y (2006) Flavour formation by amino acid catabolism. Biotechnol Adv 24:238–242PubMedCrossRefGoogle Scholar
  2. Benthin S, Schulze U, Nielsen J, Villadsen J (1994) Growth energetics of Lactococcus cremoris FD1 during energy-, carbon-, and nitrogen-limitation in steady state and transient cultures. Chem Eng Sci 49:589–609CrossRefGoogle Scholar
  3. Branco Dos Santos F, De Vos WM, Teusink B (2013) Towards metagenome-scale models for industrial applications—the case of Lactic Acid Bacteria. Curr Opin Biotechnol 24:200–206PubMedCrossRefGoogle Scholar
  4. De Vos W (2011) Systems solutions by lactic acid bacteria: from paradigms to practice. Microb Cell Fact 10:S2PubMedCrossRefGoogle Scholar
  5. Delorme C, Godon JJ, Ehrlich SD, Renault P (1993) Gene inactivation in Lactococcus lactis: histidine biosynthesis. J Bacteriol 175:4391–4399PubMedGoogle Scholar
  6. Dobric N, Limsowtin GK, Hillier AJ, Dudman NP, Davidson BE (2000) Identification and characterization of a cystathionine β/γ-lyase from Lactococcus lactis ssp. cremoris MG1363. FEMS Microbiol Lett 182:249–254PubMedGoogle Scholar
  7. Durot M, Bourguignon PY, Schachter V (2009) Genome-scale models of bacterial metabolism: reconstruction and applications. FEMS Microbiol Rev 33:164–190PubMedCrossRefGoogle Scholar
  8. Duwat P, Cesselin B, Sourice S, Gruss A (2000) Lactococcus lactis, a bacterial model for stress responses and survival. Int J Food Microbiol 55:83–86PubMedCrossRefGoogle Scholar
  9. Feist AM, Herrgard MJ, Thiele I, Reed JL, Palsson BO (2009) Reconstruction of biochemical networks in microorganisms. Nat Rev Micro 7:129–143CrossRefGoogle Scholar
  10. Fernández M, Kleerebezem M, Kuipers OP, Siezen RJ, Van Kranenburg R (2002) Regulation of the metC-cysK operon, involved in sulfur metabolism in Lactococcus lactis. J Bacteriol 184:82–90PubMedCrossRefGoogle Scholar
  11. Gasson MJ (1983) Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J Bacteriol 154:1–9PubMedGoogle Scholar
  12. Gómez De Cadiñanos LP, García-Cayuela T, Yvon M, Martinez-Cuesta MC, Peláez C, Requena T (2013) Inactivation of the panE gene in Lactococcus lactis enhances formation of cheese aroma compounds. Appl Environ Microbiol. doi:10.1128/AEM.00279-13
  13. Hoefnagel MHN, Van Der Burgt A, Martens DE, Hugenholtz J, Snoep JL (2002) Time dependent responses of glycolytic intermediates in a detailed glycolytic model of Lactococcus lactis during glucose run-out experiments. Mol Biol Rep 29:157–161PubMedCrossRefGoogle Scholar
  14. Jensen PR, Hammer K (1993) Minimal requirements for exponential growth of Lactococcus lactis. Appl Environ Microbiol 59:4363–4366PubMedGoogle Scholar
  15. Jensen NBS, Melchiorsen CR, Jokumsen KV, Villadsen J (2001) Metabolic behavior of Lactococcus lactis MG1363 in microaerobic continuous cultivation at a low dilution rate. Appl Environ Microbiol 67:2677–2682PubMedCrossRefGoogle Scholar
  16. Jensen NBS, Christensen B, Nielsen J, Villadsen J (2002) The simultaneous biosynthesis and uptake of amino acids by Lactococcus lactis studied by 13C-labeling experiments. Biotechnol Bioeng 78:11–16PubMedCrossRefGoogle Scholar
  17. Kayser A, Weber J, Hecht V, Rinas U (2005) Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture. I. Growth-rate-dependent metabolic efficiency at steady state. Microbiol 151:693–706CrossRefGoogle Scholar
  18. Klamt S, Saez-Rodriguez J, Gilles E (2007) Structural and functional analysis of cellular networks with Cell NetAnalyzer. BMC Syst Biol 1:2PubMedCrossRefGoogle Scholar
  19. Kunji ERS, Mierau I, Hagting A, Poolman B, Konings WN (1996) The proteotytic systems of lactic acid bacteria. Anton Leeuwen 70:187–221CrossRefGoogle Scholar
  20. Lahtvee P-J, Adamberg K, Arike L, Nahku R, Aller K, Vilu R (2011) Multi-omics approach to study the growth efficiency and amino acid metabolism in Lactococcus lactis at various specific growth rates. Microb Cell Fact 10:12PubMedCrossRefGoogle Scholar
  21. Levering J, Musters MWJM, Bekker M, Bellomo D, Fiedler T, De Vos WM, Hugenholtz J, Kreikemeyer B, Kummer U, Teusink B (2012) Role of phosphate in the central metabolism of two lactic acid bacteria—a comparative systems biology approach. FEBS J 279:1274–1290PubMedCrossRefGoogle Scholar
  22. Linares DM, Kok J, Poolman B (2010) Genome sequences of Lactococcus lactis MG1363 (revised) and NZ9000 and comparative physiological studies. J Bacteriol 192:5806–5812PubMedCrossRefGoogle Scholar
  23. Liu M, Nauta A, Francke C, Siezen RJ (2008) Comparative genomics of enzymes in flavor-forming pathways from amino acids in lactic acid bacteria. Appl Environ Microbiol 74:4590–4600Google Scholar
  24. Mahadevan R, Schilling CH (2003) The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metabol Eng 5:264–276CrossRefGoogle Scholar
  25. Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, Pavlov A, Pavlova N, Karamychev V, Polouchine N, Shakhova V, Grigoriev I, Lou Y, Rohksar D, Lucas S, Huang K, Goodstein DM, Hawkins T, Plengvidhya V, Welker D, Hughes J, Goh Y, Benson A, Baldwin K, Lee JH, Díaz-Muñiz I, Dosti B, Smeianov V, Wechter W, Barabote R, Lorca G, Altermann E, Barrangou R, Ganesan B, Xie Y, Rawsthorne H, Tamir D, Parker C, Breidt F, Broadbent J, Hutkins R, O’sullivan D, Steele J, Unlu G, Saier M, Klaenhammer T, Richardson P, Kozyavkin S, Weimer B, Mills D (2006) Comparative genomics of the lactic acid bacteria. Proc Nat Ac Sci 103:15611–15616CrossRefGoogle Scholar
  26. Muñoz-Tamayo R, De Groot J, Bakx E, Wierenga PA, Gruppen H, Zwietering MH, Sijtsma L (2011) Hydrolysis of β-casein by the cell-envelope-located PI-type protease of Lactococcus lactis: a modelling approach. Int Dairy J 21:755–762CrossRefGoogle Scholar
  27. Neves AR, Ramos A, Costa H, Van Swam II, Hugenholtz J, Kleerebezem M, De Vos W, Santos H (2002) Effect of different NADH oxidase levels on glucose metabolism by Lactococcus lactis: kinetics of intracellular metabolite pools determined by in vivo nuclear magnetic resonance. Appl Environ Microbiol 68:6332–6342PubMedCrossRefGoogle Scholar
  28. Notebaart R, Van Enckevort F, Francke C, Siezen R, Teusink B (2006) Accelerating the reconstruction of genome-scale metabolic networks. BMC Bioinforma 7:296CrossRefGoogle Scholar
  29. Oliveira A, Nielsen J, Forster J (2005) Modeling Lactococcus lactis using a genome-scale flux model. BMC Microbiol 5:39PubMedCrossRefGoogle Scholar
  30. Parliment TH, Kolor MG, Rizzo DJ (1982) Volatile components of Limburger cheese. J Agric Food Chem 30:1006–1008CrossRefGoogle Scholar
  31. Pastink MI, Teusink B, Hols P, Visser S, De Vos WM, Hugenholtz J (2009) Genome-scale model of Streptococcus thermophilus LMG18311 for metabolic comparison of lactic acid bacteria. Appl Environ Microbiol 75:3627–3633PubMedCrossRefGoogle Scholar
  32. Poolman B, Konings WN (1988) Relation of growth of Streptococcus lactis and Streptococcus cremoris to amino acid transport. J Bacteriol 170:700–707PubMedGoogle Scholar
  33. Price ND, Reed JL, Palsson BO (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Micro 2:886–897CrossRefGoogle Scholar
  34. Rijnen L, Bonneau S, Yvon M (1999) Genetic characterization of the major lactococcal aromatic aminotransferase and its involvement in conversion of amino acids to aroma compounds. Appl Environ Microbiol 65:4873–4880PubMedGoogle Scholar
  35. Schellenberger J, Que R, Fleming RMT, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A, Lewis NE, Rahmanian S, Kang J, Hyduke DR, Palsson BO (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Prot 6:1290–1307CrossRefGoogle Scholar
  36. Smid EJ, Konings WN (1990) Relationship between utilization of proline and proline-containing peptides and growth of Lactococcus lactis. J Bacteriol 172:5286–5292PubMedGoogle Scholar
  37. Smit BA, Engels WJM, Wouters JTM, Smit G (2004) Diversity of l-leucine catabolism in various microorganisms involved in dairy fermentations, and identification of the rate-controlling step in the formation of the potent flavour component 3-methylbutanal. Appl Microbiol Biotechnol 64:396–402PubMedCrossRefGoogle Scholar
  38. Smit G, Smit BA, Engels WJM (2005) Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microbiol Rev 29:591–610PubMedCrossRefGoogle Scholar
  39. Starrenburg MJC, Hugenholtz J (1991) Citrate fermentation by Lactococcus and Leuconostoc spp. Appl Environ Microbiol 57:3535–3540PubMedGoogle Scholar
  40. Tanous C, Gori A, Rijnen L, Chambellon E, Yvon M (2005) Pathways for alpha-ketoglutarate formation by Lactococcus lactis and their role in amino acid catabolism. Int Dairy J 15:759–770CrossRefGoogle Scholar
  41. Taymaz-Nikerel H, Borujeni AE, Verheijen PJT, Heijnen JJ, Van Gulik WM (2010) Genome-derived minimal metabolic models for Escherichia coli MG1655 with estimated in vivo respiratory ATP stoichiometry. Biotechnol Bioeng 107:369–381PubMedCrossRefGoogle Scholar
  42. Teusink B, Wiersma A, Molenaar D, Francke C, De Vos WM, Siezen RJ, Smid EJ (2006) Analysis of growth of Lactobacillus plantarum WCFS1 on a complex medium using a genome-scale metabolic model. J Biol Chem 40041–40048Google Scholar
  43. Verouden MPH, Notebaart RA, Westerhuis JA, Van Der Werf MJ, Teusink B, Smilde AK (2009) Multi-way analysis of flux distributions across multiple conditions. J Chemom 23:406–420CrossRefGoogle Scholar
  44. Vido K, Le Bars D, Mistou M-Y, Anglade P, Gruss A, Gaudu P (2004) Proteome analyses of heme-dependent respiration in Lactococcus lactis: involvement of the proteolytic system. J Bacteriol 186:1648–1657PubMedCrossRefGoogle Scholar
  45. Vos P, Simons G, Siezen RJ, De Vos WM (1989) Primary structure and organization of the gene for a procaryotic, cell envelope-located serine proteinase. J Biol Chem 264:13579–13585PubMedGoogle Scholar
  46. Wegmann U, O’connell-Motherway M, Zomer A, Buist G, Shearman C, Canchaya C, Ventura M, Goesmann A, Gasson MJ, Kuipers OP, Van Sinderen D, Kok J (2007) Complete genome sequence of the prototype lactic acid bacterium Lactococcus lactis subsp. cremoris MG1363. J Bacteriol 189:3256–3270PubMedCrossRefGoogle Scholar
  47. Wegmann U, Overweg K, Jeanson S, Gasson M, Shearman C (2012) Molecular characterization and structural instability of the industrially important composite metabolic plasmid pLP712. Microbiol 158:2936–2945CrossRefGoogle Scholar
  48. Yvon M (2006) Key enzymes for flavour formation by lactic acid bacteria. Aust J Dairy Technol 61:88–96Google Scholar
  49. Yvon M, Rijnen L (2001) Cheese flavour formation by amino acid catabolism. Int Dairy J 11:185–201CrossRefGoogle Scholar
  50. Yvon M, Chambellon E, Bolotin A, Roudot-Algaron F (2000) Characterization and role of the branched-chain aminotransferase (BcaT) isolated from Lactococcus lactis subsp. cremoris NCDO 763. Appl Environ Microbiol 66:571–577PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nicolas A. L. Flahaut
    • 1
    • 2
    • 4
    • 7
  • Anne Wiersma
    • 1
    • 3
  • Bert van de Bunt
    • 1
    • 3
  • Dirk E. Martens
    • 6
  • Peter J. Schaap
    • 1
    • 2
    • 7
  • Lolke Sijtsma
    • 1
    • 4
    • 5
  • Vitor A. Martins dos Santos
    • 7
  • Willem M. de Vos
    • 2
    • 8
  1. 1.Top Institute Food and Nutrition (TIFN)WageningenThe Netherlands
  2. 2.Laboratory of MicrobiologyWageningen UniversityWageningenThe Netherlands
  3. 3.NIZO food research BVEdeThe Netherlands
  4. 4.Kluyver Centre for Genomics of Industrial Fermentation/NCSBDelftThe Netherlands
  5. 5.Wageningen UR Food & Biobased ResearchWageningenThe Netherlands
  6. 6.Food and Bioprocess Engineering GroupWageningen UniversityWageningenThe Netherlands
  7. 7.Laboratory of Systems and Synthetic BiologyWageningen UniversityWageningenThe Netherlands
  8. 8.Department of Veterinary Biosciences and Department of Bacteriology & ImmunologyUniversity of HelsinkiHelsinkiFinland

Personalised recommendations